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Results of the MiniBooNE 
Neutrino Oscillation Search

• Introduction to MiniBooNE

• The oscillation analysis

• The initial results and their implications

• The next steps



MiniBooNE:
E898 at Fermilab

• Purpose is to test LSND with:

• Higher energy
• Different beam 
• Different oscillation signature 
• Different systematics

• L=500 meters, E=0.5−1 GeV: same L/E as LSND.



LSND
• Stopped π+ beam at Los Alamos LAMPF produces 

νe, νμ, νμ but no νe (due to π－ capture).

• 4 standard dev. excess above background. 

• Oscillation probability:

ν̄e + p → e
+ + n

Search for νe  appearance via reaction:

P (ν̄µ → ν̄e) = (2.5 ± 0.6stat ± 0.4syst) × 10−3



LSND Oscillation allowed region

E. Church et al., Phys. 
Rev. D66, 013001 (2002)

• Combined analysis: 

• Consistency at 64% 
confidence level

• Restricted 
parameter region

Confidence regions from joint analysis of LSND and KARMEN2 data



• Oscillation signature is charged-current 
quasielastic scattering:

• Dominant backgrounds to oscillation:

• Intrinsic νe in the beam

• Particle misidentification in detector

Oscillation Signature at MiniBooNE

νe + n → e
−

+ p

π → µ → νe in beam

K+
→ π0e−νe, K0

L
→ π0e±νe in beam

Neutral current resonance:
∆→ π0 → γγ or ∆→ nγ, mis-ID as e



Results presented here

• A generic search for a νe excess in the νμ-
dominated beam

• A fit for neutrino oscillations in a CP-
conserving two-flavor, appearance-only 
scenario
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• 8 GeV primary protons come from Booster 
accelerator at Fermilab 

• Booster provides about 5 pulses per second, 5×1012 
protons per 1.6 μs pulse under optimum conditions

• Data collected September 2002-January 2006: 
5.7×1020 POT in standard running configuration

MiniBooNE Beamline



.

MiniBooNE neutrino detector

• Pure mineral oil
• 800 tons; 40 ft diameter
• Inner volume: 1280 8” PMTs
• Outer veto volume: 240 PMTs



The detector records:

• Every 100 ns clock cycle:
• Total charge on each PMT

• Resolution ~1 photoelectron

• Time of first hit on each PMT above threshold
• Resolution ~1.5 ns



Event types:

• Electrons: showers, scattering ⇒ “fuzzy” 
ring

• Muons: straight, long track ⇒ well-defined 
ring

• π0→γγ: two electron-like rings

e± μ± π0



Subevents

BEAM
PULSE

• All hits are recorded in a 20-μs 
window around the beam pulse. 

• Able to check for subsequent stopped 
muon decay (“Michel”) electron: 
muon and its Michel electron resolved 
as two “subevents” (clusters of hits 
within ~100 ns). 

• The Michel electron subevent provides 
muon tag as well as a very well-
understood charge/energy calibration

• Muons capture on nucleus with 8% 
probability; these capture events 
cannot be tagged.



Oscillation Analysis
• Steps to an oscillation result:

• Predict flux

• Model neutrino interactions in detector

• Model detector response

• Reconstruct events; particle ID

• Oscillation fit



Flux model: Pion production

• Data from HARP experiment at CERN 
(taken with beryllium target at correct 
MiniBooNE beam momentum:  hep-
ex/0702024)

• Fit data to 9-parameter Sanford-
Wang parametrization

• Sanford-Wang model used in 
GEANT4 beam Monte Carlo



Flux model: kaon production

• Kaon production data 
from many experiments, 
with primary beam 
momentum 9→24 GeV

• Fit data to a Feynman 
scaling parametrization

• Sanford-Wang model 
used as well; errors 
cover the differences in 
flux predictions for 
MiniBooNE



Predicted flux at detector

• Predicted flux: 
• 99.5% νμ + νμ
• 0.5% νe + νe:

• μ+ → e+ νμ νe   (52%)    
• K+ → π0 e+ νe   (29%)
• K0 → π+ e− νe   (7%)   
• K0 → π− e+ νe   (7%)   
• π+ → e+ νe        (4%)
• Other	             ( <1%)

• Total antineutrino content is 
6% (much of it at very low 
energy)



Further constraints on flux components
• Muons originate predominantly from pion decays in secondary 

beam:
• These pions also produce most νμ in detector, which are 

easily observed
• Kinematic correlation allows tight constraint on π+→μ+→νe 

chain

• Kaon decay has much higher Q-value than pion decay. Several 
ways to take advantage of this:

• Kaons produce higher energy νμ: use the high energy events to 
constrain the kaon flux that produces νe background

• Off-axis “Little Muon Counter” views high-pT muons in the 
secondary beam

LMC DATA

ν from π+

ν from K



Neutrino Interactions in MiniBooNE

Other
4%

NC π0
8%

NC π±
4%

NC Elastic
16%

CC π0
4%

CC π±
25%

CC QE
39%

D. Casper, NPS, 112 (2002) 161

Predicted event spectrum, fractions before cuts
(NUANCE Monte Carlo)



Neutrino Interactions in MiniBooNE

Other
4%

NC π0
8%

NC π±
4%

NC Elastic
16%

CC π0
4%

CC π±
25%

CC QE
39%

D. Casper, NPS, 112 (2002) 161

Predicted event spectrum, fractions before cuts
(NUANCE Monte Carlo)

Easily identified: not 
significant background to 
for oscillation analysis.



Charged-current quasielastic (CCQE)

• Golden signal mode for oscillation search: clean events; neutrino energy 
can be calculated given known neutrino direction:

• Nucleus may break up

• Final state nucleon not excited: no resonance, no pion, no (hard) gamma

W

n

νµ

p

µ−

W

p

ν̄µ

n

µ+

Neutrino scatters off 
nucleon in target:

ECCQE
ν =

mNE" − 1
2m2

"

mN − E" + p" cos θ"
; Q2 = −2Eν(Eν − p" cos θ") + m2

"



Cross-section parameters need tuning

• From Q2 fits to MiniBooNE νμ 
CCQE data:

• MAeff: effective axial mass

• EloSF: Pauli-blocking parameter

• From electron scattering data:

• Eb -- binding energy

• pF  -- Fermi momentum



Neutral Current Δ Resonances

• No Michel electron to tag events

• Gamma rays, electrons indistinguishable in the detector

• Δ →Nπ0: large decay branching ratio, but can usually detect 
both gammas

• Δ →Nγ radiative decay: small branching ratio (<1%), softer 
photon, but looks exactly like electron.

• Neutral current Δ resonance production is our largest source of 
particle misidentification background.

∆

Z

N

ν

π0, γ

N ′

ν



Neutral Current Δ Resonances

•π0 events
• Most π0 events have two 

reconstructible photon 
rings.

• Mass peak identifies 
neutral pions

Data
MC

• Total NC Δ rate is measured from these fully-reconstructed π0 events.

• Use measured π0 total rate and momentum spectrum to reweight the Δ 
Monte Carlo 

• Reduces error on unreconstructed/misidentified π0 and radiative decays



External backgrounds: “Dirt”

• “Dirt” events: neutrino interactions 
outside the detector

• Most events are cut by veto

• Background is dominated by π0 
where only one photon enters 
detector

• Cosmic/other beam-unrelated 
background is very small: 2.1±0.5 
events, measured with beam-off data

Other
5%CCπ+

15%

CC QE
5%

π°→γγ
76%Dirt event type

(after PID cuts)



Neutrino detector modeling: 
“optical” issues

• Primary light sources
• Cherenkov 

• Emitted promptly,  in cone 
• known wavelength distribution 

• Scintillation 
• Emitted isotropically 
• Several lifetimes, emission 

modes 
• Studied oil samples using 

Indiana Cyclotron test beam
• Particles below Cherenkov 

threshold still scintillate

• Optical properties of oil, 
detectors:

• Absorption (attenuation length 
>20m at 400 nm)

• Rayleigh and Raman scattering
• Fluorescence
• Reflections
• PMT response



Calibration Sources

Michel electrons π0

Tracker system



Event Reconstruction 
and Particle ID

• Parallel approaches to analysis: independent 
event reconstructions and PID algorithms

• Track/likelihood-based (TB) analysis: detailed 
reconstruction of particle tracks; PID from ratio of fit 
likelihoods for different particle hypotheses. Less 
vulnerable to detector modeling errors.

• Boosted decision trees (BDT): algorithmic approach, able 
to extract particle ID information from larger set of lower-
level event variables. Better signal/background, but more 
sensitive to detector modeling.



The Blindness Procedure
• Philosophy: hide any event that could be an oscillation 

candidate from detailed analysis, while allowing aggregate or 
low-level information on all events to be examined.

• Early stages: highly restrictive, as particle ID was being 
developed: neutrino events closed by default. to open a sample 
of events for study, must show it is (nearly) oscillation-free.

• Later stages: MC and algorithms become more stable and 
trustworthy. Look in regions closer and closer to the signal; 
eventually all data open by default, and only the signal 
“box” (1% of events) was closed.

• Final stages: Open box in a series of steps, starting with fit 
quality values only, ending in full spectrum and oscillation fit.



The Track-based Analysis: 
Reconstruction

• A detailed analytic model of extended-track light 
production and propagation in the tank predicts the 
probability distribution for charge and time on each PMT 
for individual muon or electron/photon tracks.

• Prediction based on seven track parameters: vertex (x,y,z), 
time, energy, and direction (θ,φ)⇔(Ux, Uy, Uz).  

• Fitting routine varies parameters to determine 7-vector that 
best predicts the actual hits in a data event

• Particle identification comes from ratios of likelihoods from 
fits to different parent particle hypotheses



The Track-based Analysis: 
Reconstruction

Single muon 7

Single electron/photon 7
Two photons from 

common vertex, mass 
unconstrained

12
Two photons from 

common vertex, mass 
constrained to m(π0)

11

FIT HYPOTHESIS NUMBER OF PARAMETERS

π0→γγ

Electron

ElectronPhoton

Muon



The Track-based Analysis: 
Event Selection

• Start with events that pass “precuts:”
• Exactly one subevent during spill
• NVETO < 6 hits
• NTANK > 200 hits

• Perform all four fits: electron; muon; two-track, with and 
without π0 mass constraint

• Fiducial cuts:
• Radius must be less than 500 cm (calculated from electron fit)

• Make track energy-dependent cuts on likelihood ratios, to 
reject specific backgrounds in order from easiest to hardest



The Track-based Analysis: 
Muon rejection

• log(Le/Lμ): compare likelihoods 
returned by e and μ fits. 

• log(Le/Lμ)>0 indicates electron 
hypothesis is favored. 

• Analysis cut is parabola whose 
parameters selected to 
optimize oscillation sensitivity

• Discrimination easier at higher 
energy (increasing muon track 
length)fitted E (MeV)
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The Track-based Analysis: 
Neutral pion rejection

• These events have no observed Michel 
electron, and have passed the muon-
rejection cut

• Events that are signal-like in either π0 
variable are excluded for now 

• Neutral pion population shows up 
well, matches MC
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The Track-based Analysis: 
Neutral pion rejection

• Next step: look in these 
sidebands: e-like in one 
variable, π0-like in other
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The Track-based Analysis: 
Looking in the sidebands

• Look at full mass range for 
events with log(Le/Lπ) < 0

• These are signal-like in mass, but 
background-like in log(Le/Lπ)

• Nice data/MC agreement
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BACKGROUND MC
after all cuts

The Track-based Analysis: 
Efficiency and backgrounds

cu
t e

ffi
ci

en
cy

SIGNAL MC
after precuts

 Log(Le/Lμ)
  Log(Le/Lμ)

  invariant mass

x1500 μ rejection
 x200  π0 rejection



Boosted Decision Trees (BDT)

• An algorithm optimized to combine many weakly discriminating 
variables into one that provides powerful separation

• B. Roe et al., Nucl. Inst. Meth. A543 577 (2005)

• Idea: Go through all analysis variables and find best variable and 
value to split a Monte Carlo data set.

• For each of the two subsets repeat the process

• Proceeding in this way, a “decision tree” is built, whose final 
nodes are called leaves



A Decision Tree
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Boosted Decision Trees (BDT)

• After the tree is built, additional trees are built with 
the leaves re-weighted to emphasize the previously 
misidentified events (since those are hardest to 
classify).  This is “boosting.”

• Each data event is sent through every tree, and in 
each tree is assigned a value:

• +1 if the event ends up on a signal leaf

• −1 if the event ends up on a background leaf.

• PID output variable is a sum of event scores from all 
trees: background at negative values, signal at 
positive values.



Analysis variables used in BDT:

• Low-level functions of fundamental variables 
like hit time, charge, etc. 

• Examples of analysis variables:

• Physics reconstruction variables (cosθμ, 
vertex radius, ...)

• Lower-level quantities (charge in theta 
range, etc)



Efficiency of BDT PID cut

Background MC



Cross-checks and Systematic Errors

• Constraints from CCQE sample

• Cross-sections

• Optical model

• Error propagation

• Final estimate of errors and backgrounds



Neutrino cross-section errors 
for oscillation analysis

These cross-sections and several others 
will be the subject of upcoming 
dedicated MiniBooNE analyses.

Parameter Error/Value Source

MQE
A , ESF

lo 6%, 2% (stat+bkg) MiniBooNE νµ CCQE
QE σ norm 10% MiniBooNE νµ CCQE
NC π0 rate few % (depends on pπ) MiniBooNE NC π0 data
∆→ Nγ rate ∼ 10% MiniBooNE NC π0 data, ∆→ Nγ BR
EB , pF 9 MeV, 30 MeV External data
σDIS 25% External data



Optical model uncertainties

• Optical model depends on 39 parameters such as absorption, 
scintillation, fluorescence behavior.  

• Use “Multisim” technique to estimate error: vary the parameters 
according to a full covariance matrix, and run 70 full GEANT Monte 
Carlo “experiments” to map the space of detector responses to the 
parameters. 

• Space of output results is used to produce error matrix for the 
oscillation candidate histogram

# 
of

 m
ul

tis
im

s

# events passing signal cuts in bin  500<EνQE<600 MeV

70 Optical Model multisims

Central 
Value MC

• Non-optical model errors evaluated using 
“mock multisims” generated by reweighting 
a single high-statistics MC data set

• Example of multisim outputs in a single osc. 
bin:



The error matrix

• N: Number of events passing cuts 
• MC: Central value Monte Carlo
• α: index represents a given multisim
• M: total number of multisims
• i, j: EνQE bins

• Brings in correlations among the input 
parameters, and the resulting correlations among 
the data bins

• Total error matrix is sum from nine sources (optical 
model, K production, QE cross-section, etc...)

• Track-based: uses error matrix in νe EνQE only (νμ 
CCQE information comes in reweighting instead of 
fit)

• Boosting: uses combined error matrix in νμ+νe 

EνQE bins

Eij =
1
M

M∑

α=1

(
Nα

i −NMC
i

) (
Nα

j −NMC
j

)



Expected background events by source 
(Track-based analysis)

If LSND 
correct

PROCESS EVENTS AFTER SELECTION 
BEAM UNRELATED 2
DIRT 17

NEUTRAL CURRENT π0 62
NC RADIATIVE Δ DECAY 20
NC COHERENT AND RADIATIVE <1
νμ QUASIELASTIC 10
NEUTRINO-ELECTRON ELASTIC 7
OTHER νμ 13
INTRINSIC νe FROM MUONS 132
INTRINSIC νe FROM K+ 71
INTRINSIC νe FROM K0 23
INTRINSIC νe FROM π+→e+νe 3

TOTAL BACKGROUND 358 ± 35(syst)

0.26% νμ→ νe  163



Oscillation sensitivity

• Track-based algorithm 
has slightly better 
sensitivity to 2-
neutrino oscillations

• This will therefore be 
our primary result 
(decided before 
unblinding)



• First step:
• Perform fit, but do not report results
• Return χ2 probability for a set of diagnostic variables, not 

including the quasielastic energy on which the fit is performed, 
compared to Monte Carlo with (still hidden) best-fit signal

• One distribution poor (1% CL): two background-
dominated low-energy bins removed from Track-Based fit

• Second step:
• Compare these plots directly, with no normalization info

• Third step:
• Report the χ2  for the oscillation parameter fit

• Final step:
• Report the results of the fit and the full energy distribution

Unblinding



Results

• Track based analysis: 475<EνQE<1250 MeV

• Expected background: 358 ±19 (stat) ± 35 (syst)

• Observed: 380              Discrepancy: 0.55 σ

NO EVIDENCE FOR OSCILLATIONS
IN COUNTING ANALYSIS



Energy fit and spectrum

• Good agreement with background only (93% CL)

• Best Fit (dashed): 
  (sin22θ, Δm2) = (0.001, 4 eV2), 99% fit CL



Oscillation Limit
• Single-sided 90% 

confidence limit

• Best fit (star): 
  
(sin22θ, Δm2) = 
(0.001, 4 eV2)



The full spectrum

• Extending the plot 
down to the 300 
MeV threshold

• A significant 
data/MC 
discrepancy exists 
in the lower bins



Oscillation fit in Boosting Analysis
• Best fit probability is 62% 
• Less significant excess at low energy (but larger normalization error)
• Only diagonal errors shown — fit uses full error matrix
• Counting Experiment:    300<EνQE<1600 MeV  

• Data:   971 events	
• Background expectation: 1070 ±33 (stat) ±225 (sys) events
• Overall counting significance:   −0.38 σ



Ways to present limits:

•Single sided raster scan 
(historically common,  
our default)

• Global χ2 scan

• Unified approach 
(Feldman-Cousins) 

Limit curves under different 
confidence bound options



MiniBooNE vs. LSND:
A simple compatibility test

• For each Δm2, determine the MiniBooNE (M) and LSND (L) 
measurement of sin2(2θ):  

• zM ± σM,  zL ± σL  where z ≡ sin2(2θ) and σM, σL  evaluated at 
that  Δm2

• For each Δm2, form χ2 between MiniBooNE and LSND 
measurement:

• Find z0 that minimizes χ2 (weighted average of two 
measurements of sin2(2θ)); this gives χ2min

• Find probability of χ2min for 1 dof; this is the joint probability at 
this Δm2 if the two experiments are measuring the same thing.

χ2
0 =

zM − z0

σ2
M

+
zL − z0

σ2
L

•M: MiniBooNE 
•L:   LSND



LSND-MiniBooNE compatibility

• MiniBooNE is incompatible with a νμ→νe 
appearance-only interpretation of LSND at 
98% CL 



Next Steps

• Further investigation of low-energy excess

• See next talk 

• Further interpretation of oscillation limit

• Full MiniBooNE+LSND+KARMEN joint 
analysis

• Combined track-based and boosting 
analysis



Conclusions

• MiniBooNE sets a limit on νµ→νe oscillations.  We strongly exclude 
LSND in a CP-conserving two-neutrino model.

• Data show discrepancy vs. background at low energies, but 
spectrum inconsistent with two-neutrino oscillation.
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