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Booster Neutrino Beam 
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 8.9 GeV/c momentum protons 
extracted from Booster, steered 

toward a Beryllium target in 
bunches of 5 × 1012 at a maximum 

rate of 5 Hz 
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Booster Neutrino Beam 

Magnetic horn with reversible 
polarity focuses either neutrino or 

anti-neutrino parent mesons 

(“neutrino” vs “anti-neutrino” mode) 



MiniBooNE Flux 

  Flux prediction based 
exclusively on external data - 
no in situ tuning 

  Dedicated pion production data 
taken by HARP experiment to 
predict neutrino flux at MiniBooNE 

  A spline fit to these data brings 
flux uncertainty to ~9% for pions 
produced in HARP-covered 
phase space  6 

MiniBooNE collaboration,  
Phys. Rev. D79, 072002 (2009)   

HARP collaboration, 
Eur. Phys. J. C52 29 (2007) 
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CCQE Events in MiniBooNE 

CCQE is the most prevalent 
interaction at MiniBooNE’s 

energy range, accounting for 
~40% of all events.  
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MiniBooNE: spherical Cherenkov 
detector, filled with 800 tons of 

undoped mineral oil (CH2) 
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CCQE Events in MiniBooNE 
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  MiniBooNE nuclear simulation: Relativistic Fermi 
Gas (RFG) model  

  Models nucleons as independent, quasi-free 
particles bound by a constant EB  

  All struck (outgoing) nucleons subject to Pauli 
blocking, enforced by a global Fermi momentum 

  Dipole axial form factor, FA(Q2) = 1.267(1 - Q2/MA
2)-2 

  Non-dipole vector form factor  

Nucl. Phys. B43 (1972) 605 

Bodek et al,. arxiv:hep-ex/0308005 



Only the muon from the primary interaction  
is observed, but we can reconstruct incident anti-neutrino 

energy and momentum transfer based on muon kinematics 

Under the assumption of a target proton at rest, 
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CCQE Events in MiniBooNE 

(θµ: muon angle wrt neutrino beam)	
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  First presented NuInt09, T. Katori 
 Phys. Rev. D81, 092005 (2010) 

  Measurements:  

     

    

    
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Using the RFG nuclear 
model, the axial mass MA 

and an empirical Pauli 
blocking scale was 

extracted from a shape-
only fit to data 



  First presented NuInt09, T. Katori 
 Phys. Rev. D81, 092005 (2010) 

  Measurements:  

     

    
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More interesting, νµ CCQE 
σ > 30% higher than 

expected!  

MiniBooNE νµ CCQE Review 



  First presented NuInt09, T. Katori 
 Phys. Rev. D81, 092005 (2010) 
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    

    
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•   Primary result -  extraction based on observables only 

•   Independent of interaction model assumptions 

MiniBooNE νµ CCQE Review 
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Wrong-sign Background 

  “Wrong signs”: anti-neutrinos in 
the neutrino beam and vice 
versa 

  MiniBooNE detector 
unmagnetized, cannot 
separate contributions based 
on CC interactions 

  Wrong-sign background far 
more serious in anti-neutrino 
mode due to both flux and cross 
section effects 

G. P. Zeller 

~30% 

~2% 
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Wrong-sign Background 

  Flux: leading particle 
effect creates ~ 2x as 
many π+ as π- 

  Cross section: at MiniBooNE  energies (Eν~1 GeV), 
neutrino cross section ~ 3x higher than anti-neutrino 

18 

Be p 

π+ π-	





  Wrong-sign pions 
escape magnetic 
deflection and 
contribute to the 
anti-neutrino 
beam via low 
angle production 

How wrong signs contribute to flux 

This motivates a dedicated study of νµ content of the beam 19 

  In anti-neutrino mode low-angle production is a crucial 
flux region and we do not have a reliable prediction 



Wrong-sign measurements 

  Three independent and complementary 
measurements of the wrong-sign background: 

1.  Fitting the angular distribution of the CCQE 
sample for the neutrino and anti-neutrino 
content 

2.  Comparing predicted to observed event 
rates in the CCπ+ sample  

3.  Measuring how often muon decay electrons 
are produced (exploits µ- nuclear capture) 
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First measurement of the νµ content of a νµ beam 
using a non-magnetized detector.   

arxiv:1102.1964 



Wrong-sign measurements 

  General strategy:  isolate samples sensitive to the 
νµ beam content, apply the measured cross 
sections from neutrino mode (CCQE, CCπ+) 
  Crucial application of BooNE-measured νµ σ’s  

  The level of data-simulation agreement then 
reflects the accuracy of the νµ flux prediction  
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  In the RFG, due to the interference term the 
CCQE νµ σ >> νµ σ for backward-going µ	
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Scale the νµ  
template by “αν” 

Scale the νµ  
template by “αν” 

Fitting the outgoing muon 
angular distribution 



  Results indicate the νµ 
flux is over-predicted 
by ~30% 

  Fit also performed in 
bins of reconstructed 
energy; consistent 
results indicate flux 
spectrum shape is 
well modeled 

< 600 0.65 ± 0.22 0.98 ± 0.18 

600 - 900 0.61 ± 0.20 1.05 ± 0.19 

> 900 0.64 ± 0.20 1.18 ± 0.21 

Inclusive 0.65 ± 0.23 1.00 ± 0.22 25 

Fitting the outgoing muon 
angular distribution 



Wrong-sign measurements 
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Δ   The neutrino 
induced 
resonance 
channel leads to 
three leptons 
above Cherenkov 
threshold 
1.  Primary muon 
2.  Decay electron 
3.  Decay positron  

CCπ+ sample formation 

27 
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  Due to nuclear π- 
capture, the 
corresponding 
anti-neutrino 
interaction has 
only two: 
1.  Primary muon 

2.  Decay positron  

CCπ+ sample formation 

~100% 
nuclear 
capture 
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  With the simple requirement of two decay electrons 
subsequent to the primary muon, we isolate a sample 
that is ~80% neutrino-induced. 

29 

EνΔ (MeV) νµ Φ scale “αν”	


600 - 700 0.65 ± 0.10 

700 - 800 0.79 ± 0.10 

800 - 900 0.81 ± 0.10  

900 - 1000 0.88 ± 0.11 

1000 - 1200 0.74 ± 0.10 

1200 - 2400 0.73 ± 0.15 

Inclusive 0.76 ± 0.11 

  Data/simulation ratios in 
bins of reconstructed 
energy indicate the 
neutrino flux is over-
predicted in 
normalization, while the 
spectrum shape is 
consistent with the 
prediction 

CCπ+ νµ flux measurement 



  With the simple requirement of two decay electrons 
subsequent to the primary muon, we isolate a sample 
that is ~80% neutrino-induced. 
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CCπ+ νµ flux measurement 

EνΔ (MeV) νµ Φ scale “αν”	


600 - 700 0.65 ± 0.10 

700 - 800 0.79 ± 0.10 

800 - 900 0.81 ± 0.10  

900 - 1000 0.88 ± 0.11 

1000 - 1200 0.74 ± 0.10 

1200 - 2400 0.73 ± 0.15 

Inclusive 0.76 ± 0.11 

  Data/simulation ratios in 
bins of reconstructed 
energy indicate the 
neutrino flux is over-
predicted in 
normalization, while the 
spectrum shape is 
consistent with the 
prediction 

Model-independent measurement, employed 
by both CCQE, NCE anti-neutrino analyses 



Wrong-sign measurements 

  Three independent and complementary 
measurements of the wrong-sign background: 

1.  Fitting the angular distribution of the CCQE 
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µ- capture measurement 

  We isolate a > 90% CC sample for both µ-only and  
µ+e samples  

  CC events typically observe both µ+e - two reasons 
why we may not observe the decay electron: 

1.  Decay electron detection efficiency 

2.  µ- nuclear capture (νµ CC events only) 

32 



µ- capture measurement 

  By requiring (µ-only/µ+e)data = (µ-only/µ+e)MC and 
normalization to agree in the µ+e sample we can 
calculate a νµ flux scale        and a rate scale   

33 

Predicted neutrino content in the  
µ+e sample, for example 



µ- capture measurement 

  By requiring (µ-only/µ+e)data = (µ-only/µ+e)MC and 
normalization to agree in the µ+e sample we can 
calculate a νµ flux scale        and a rate scale   

 Results: 

34 PRELIMINARY 



Neutrino flux measurement summary 
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  Discrepancy with prediction appears to be in normalization 
only - flux shape is well modeled 

νµ content of νµ beam 

PRELIMINARY 
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RFG model comparisons 

  Will show bkg-subtracted data  

  Purity: 64%.  	



  Data not corrected for reconstruction biases	
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Contribution % 

νµ CCQE 64 

νµ CCQE 14 

CCπ- 14 

CCπ+ 4 

Other 4 

CONSTRAINED 
PARTIALLY 

CONSTRAINED 



RFG model comparisons 

  Will compare data to absolutely-normalized 
simulation under two CCQE model hypotheses:  

        “MA
H”: axial mass for hydrogen scattering, “MA

C”: carbon 

1.  MA
C = 1.35 GeV, κ = 1.007, MA

H = 1.02 GeV  

2.  MA
C = MA

H = 1.02 GeV  κ = 1.000 

38 

MA = 1.35 GeV, κ = 1.007 consistent with BooNE νµ data 

MA = 1.02 GeV consistent with light target data 

[1] 

[2] 

Bodek et al,. arxiv:hep-ex/0308005 

[1] 

[2] 

MiniBooNE, Phys. Rev. D81, 092005 (2010) 



Q2
QE: shape comparison to data 

39 
MA = 1.02 GeV, κ = 1 inconsistent with data shape 

νµ CCQE 



Q2
QE: absolute comparison with 

40 
data/MC integrated ratio: 1.21 ± 0.12  

νµ CCQE 



Q2
QE: absolute comparison with 

41 
data/MC integrated ratio: 1.39 ± 0.14  

νµ CCQE 
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EνQE: shape comparison to data 

EνQE shape insensitive to CCQE model parameters 

PRELIMINARY 

νµ CCQE 



EνQE: absolute comparison with 

43 
data/MC integrated ratio: 1.21 ± 0.12  

PRELIMINARY 

νµ CCQE 



EνQE: absolute comparison with 

44 
data/MC integrated ratio: 1.39 ± 0.14  

PRELIMINARY 

νµ CCQE 
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Future νµ CCQE measurements 

  Absolute and differential cross section 
measurements, including the model-independent 
double differential cross section  

46 



Future νµ CCQE measurements 

  Absolute and differential cross section 
measurements, including the model-independent 
double differential cross section  

47 

Taking the difference between 
νµ and νµ data in the Q2 

distribution gives direct 
sensitivity to the axial form factor 	





Conclusions 
  Though MiniBooNE is unmagnetized, a model-

independent statistical technique measures the νµ 
content in the νµ beam to ~15% uncertainty 

  Shape comparisons to data show consistency with 
RFG model parameters extracted from BooNE νµ 

data, while MA = 1.02 GeV remains inconsistent with 
BooNE data.   

  Normalization discrepancy ([data-bkg]/prediction): 

  1.21 ± 0.12 for MA
C = 1.35 GeV, κ = 1.007 MA

H = 1.02 GeV 

  1.39 ± 0.14 for MA
C = MA

H = 1.02 GeV  κ = 1.000 

  νµ CCQE data: 1.05 ± 0.08 for MA = 1.35 GeV, κ = 1.007	
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Conclusions 

  MiniBooNE will soon publish absolute and differential 
νµ CCQE cross sections, will also use νµ CCQE 
measurement to measure interference term in Q2 and 
Eν 

49 



More from MiniBooNE today 

  For new results in the MiniBooNE anti-neutrino 
NCE channel please see the next talk by R 
Dharmaplan 

  For a comprehensive review of MiniBooNE single 
pion production see R Nelson’s talk this 
afternoon 
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Thanks for your attention! 

More from MiniBooNE today 



backup 
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RFG model comparisons: 
Q2 shape 
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κ suppresses low-Q2 events MA controls high-Q2 tail 
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RFG model comparisons: 
EνQE shape 

Neutrino energy shape mostly insensitive to MA, κ	





How wrong would the νµ Φ measurement have to 
be to account for observed enhancement?  

55 
Comparing to “#1”: MA

C (MA
H) = 1.35 (1.02) GeV, κ = 1.007 

Prediction * 1.26, 
4.5σ  from CCπ+  
measurement 



How wrong would the νµ Φ measurement have to 
be to account for observed enhancement?  

56 
µ scattering angle shape mismatched with νµ Φ * 1.26 



How wrong would the νµ Φ measurement have to 
be to account for observed enhancement?  

57 
CCπ+ sample severely over-predicted 



Wrong-sign Flux Prediction 

  Not cross-section 
weighted 

D Schmitz 
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How Wrong Signs Contribute to Flux 

  Same low angle region 
not covered by HARP the 
most important for νµ 
contamination 

D Schmitz 
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Q2 - muon angle correlation 

60 

(z-axis: log scale) 



CCQE Selection 

€ 

1.  Two subevents 

2.  Veto hits < 6, both subevents 

3.  Vertex, 1st subevent < 500cm from 
tank center (fiducial volume) 

4.  1st subevent:                                              
4.4 < cluster time (μs) < 6.4  

5.  1st subevent: Tμ> 200 MeV 

6.  μ range > (500 * Tμ - 100) cm     
μ range > 100 cm. 

7.  1st subevent ln (μ/e) > 0 

8.  cos θμ > 0 

61 



CCQE Selection 

€ 

1.  Two subevents 

2.  Veto hits < 6, both subevents 

3.  Vertex, 1st subevent < 500cm from 
tank center (fiducial volume) 

4.  1st subevent:                                              
4.4 < cluster time (μs) < 6.4  

5.  1st subevent: Tμ> 200 MeV 

6.  μ range > (500 * Tμ - 100) cm     
μ range > 100 cm. 

7.  1st subevent ln (μ/e) > 0 

8.  cos θμ > 0 

62 



CCQE Selection 

€ 

1.  Two subevents 

2.  Veto hits < 6, both subevents 

3.  Vertex, 1st subevent < 500cm from 
tank center (fiducial volume) 

4.  1st subevent:                                              
4.4 < cluster time (μs) < 6.4  

5.  1st subevent: Tμ> 200 MeV 

6.  μ range > (500 * Tμ - 100) cm     
μ range > 100 cm. 

7.  1st subevent ln (μ/e) > 0 

8.  cos θμ > 0 

63 



Event composition in EνQE 

64 



Event composition in Q2
QE 
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Two dimensional muon kinematics - data/MC ratio, “#1” 
MA

C = 1.35 GeV, MA
H = 1.02 GeV, κ = 1.007	



66 SHAPE COMPARISON 

PRELIMINARY 



67 SHAPE COMPARISON 

Two dimensional muon kinematics - data/MC ratio, “#2” 
MA

C = MA
H = 1.02 GeV, κ = 1.000	



PRELIMINARY 



Background simulation 

  Sample is ~65% pure νµ CCQE. 

  Of the remaining 35%, 30% are corrected based 
on MiniBooNE measurements 

  νµ flux corrected by CCπ+-based measurement	



  Observed νµ CCQE cross section implemented 

  All CCπ bkg events corrected based on kinematic 
measurements	
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  MA = 1.35 GeV comes in 
conflict with the previous MA 
measurements taken on 
mostly light nuclear targets 

 Previous world average:  
   MA = 1.02 ± 0.01 GeV 

J. Phys.: Conf. Ser. 110 082004 (2008) 

MiniBooNE νµ CCQE Review 



70 

  However, other recent experiments 
have observed a larger axial mass 
as well 

  Notable NOMAD measurement on 
a carbon nuclear target consistent 
with MA = 1.02 GeV 

  Crucial to recognize model 
dependence in interpretations: 
e.g. NOMAD makes some 
requirement of 1 µ, 1 p in FS; 
MiniBooNE makes no outgoing 
nucleon requirement 

MiniBooNE νµ CCQE Review 



  We form a linear combination of the neutrino 
and anti-neutrino content to compare with 
CCQE data: 

  And minimizeχ2: 

Fitting the Outgoing Muon 
Angular Distribution 

All predicted neutrino, anti-
neutrino events  

Rate scales to be  
extracted from data 
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Can we separate H2 content? 

72 Even in Tµ - cos θµ space, H2 content  
completely degenerate with CCπ bkgs 



  ~9% errors only true for 
pions produced in 
HARP-covered phase 
space 

  Due to large proton 
background, pion 
production below       
30 mrad not reported 

  While not a serious issue 
for neutrino mode, we’ll 
see later this is the 
dominant production 
region for a critical 
background to the 
anti-neutrino analyses 

D Schmitz 

π- phase space contributions  
to anti-neutrino mode flux 73 

HARP coverage 

MiniBooNE Flux 



Fitting the outgoing muon 
angular distribution 

  Neutrino vs anti-neutrino CCQE cross sections 
differ exclusively by an interference term that 
changes sign between the two 

  The divergence is 
more pronounced 
at higher Q2, which 
is strongly 
correlated with 
backward 
scattering muons   

74 


