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Do the νµ oscillate into νe ?

 Produce νµ

 Select νe

 Observe an excess or not? Check if the
excess is consistent with oscillation

 νµ

0.5% intrinsic νe

Signal
(Δm2=1.2eV2, sin22θ=0.003)
Background
 misidentified νµ  (mainly π0s)
 νe from µ++ decay
  νe from Kfrom K++, K, K00 decay decay
 Δ   Δ   ⇒⇒     ΝγΝγ
 Out of tank events (Out of tank events (‘‘dirtdirt’’))

Eν(QE)Eν(QE)

νe selection
cuts

Oscillation Analysis



Strategy
Modern neutrino beam experiments use a ‘near to far’

ratio to observe oscillations
 Directly compare initial neutrino beam to final neutrino beam
 This causes many systematic errors to cancel between the two

samples, such as flux and cross sections
MiniBooNE has no near detector, but we can still use

measurements to constrain backgrounds
Two complementary analysis approaches address

constraints
 Use a data sample to correct a background
 Fit two samples simultaneously to reduce the size of the errors



Constraints with MiniBooNE
data

Use a data sample to correct a background
 We must learn about the signal region without looking at it

(blind analysis)
 Measure pure or enhanced samples of a given background;

rate measurements circumvent flux, cross section errors
 Infer the shape and normalization of the background in the

signal region

 Examples: NC π0 misIDs, out of tank events, νe from µ decay



 Measure π0s in MiniBooNE
very pure (~90%) sample

 Compare the observed π0

rate to the MC as a
function of π0 momentum,
and make a correction
factor

 Reweight the misidentified
π0s in the νe sample based
on their momentum by this
correction factor

 Can also correct radiative
events Δ → N + γ

Constraint Example: NC π0s
Mγγ Mass Distribution for Various pπ0 Momentum Bins



 Events from interactions in the
surrounding rock produce photons
which pass the veto and give events
within the inner tank ( so called “dirt”)
events

 Create a sample of enhanced dirt
events
in time with beam, minimal veto activity,

1 subevent, not decay electron
low energy, high radius

 Checks prediction spatial
distribution, energy spectrum of
these events; sets the normalization
for dirt events in the νe sample

Constraint Example: Out of tank
events

Dirt component
Data

visible energy (MeV)



Without employing a link between νe and νµ , νe from µ+ would have  flux,
cross section, detector uncertainties

However, for each νe produced from a µ+, there was a corresponding νµ

and we observe that νµ spectrum
This is true here because the pion decay is very forward

Therefore, we know that some combination of cross sections, flux, etc
errors are excluded by our own data, and so the error is reduced

Constraint Example: νe from µ+

π+
µ+

νµ

e+

νe

νµ E νµ

Eπ



Two methods to include νµ  information into the νe
analysis:
 Reweight the νe  based on the observed νµ spectrum, and then

fit the νe s for oscillation (used in likelihood analysis)
 Fit simultaneously the νµ and νe energy spectrums (used in

boosted decision tree analysis)
νµ provide information to constrain errors, νe provide information for

oscillation parameters

Constraints in action



Fit Mechanics
To fit data d to some prediction p, form a χ2:

where Δ = (d-p) in each energy bin i or j. 2 parameter mixing
scenario included in p

(Mij)-1 is the inverse of the error matrix

Systematic (and statistical) uncertainties in Mij matrix

χ 2 = Δ i Mij
−1Δ j

i , j=1

bins

∑



If  Mij were just statistics, it would
have values along the diagonals,
and zero elsewhere. This matrix
has no correlations, as each bin
contributes to the χ2 only as the
square of itself.

If only it were this simple...

To construct this matrix for any set of
uncertainties α , one would measure
each α   and sum the square of the
error in each bin:

 

Mij =

N1 0 0 0 0
0 N 2 0 0 0
0 0  0 0
0 0 0 Nk 0
0 0 0 0 Nk

Mij = σ 2

α=1

systematics

∑ ij(α )

 

Mij =

(σ 2
1 +σ 2

2 +…+σ 2
α)1 0 0 0 0

0 (σ 2
1 +σ 2

2 +…+σ 2
α)2 0 0 0

0 0  0 0
0 0 0 (σ 2

1 +σ 2
2 +…+σ 2

α)k − 1 0
0 0 0 0 (σ 2

1 +σ 2
2 +…+σ 2

α)k



... now to reality

Now, bin i is related to bin j by ρijσiσj

 

Mij =

σ 2
11 ρ21σ 2σ1  ρk1σ kσ 1

ρ12σ1σ 2 σ 2
22  
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Consider a single source of error, but now with correlations:



Fit Mechanics
Do a combined oscillation fit to the observed νµ and νe energy

distribution

Note this χ2 includes νµ sample and νe sample bins, and a 2 parameter
oscillation scenario. Mij has 4 distinct sections: νe / νe bin terms, νµ /
νµ bin terms, and cross terms which mix νµ  and νe

Mij =
ν e ν e /νµ

νµ /νe νµ

⎛
⎝⎜

⎞
⎠⎟



How this helps: 2x2 case

Take just 1 νµ , νe bin:

Invert, and multiply by (Δe Δµ)    Δ = data-prediction(signal). The χ2
minimizes for signal  of:

with an uncertainty of:

With ρ approaching 1 (high correlation) and small statistical error for νµ:

or the error on the signal is limited by the statistical error, not
systematic error of the νe sample

signal = Δe 1− ρ
Nµ /σµ +1( )

Δµ /σµ

Δe /σe
⎛
⎝⎜

⎞
⎠⎟

Mij =
Ne +σ 2e ρσ eσµ

ρσµσ e Nµ +σ 2
µ

⎛
⎝⎜

⎞
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σ 2
signal = Ne + σe2 1− ρ2

Nµ /σµ +1( )
⎛
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⎞
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signal = Δe 1− Δµ /σµ

Δe /σe
⎛
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⎞
⎠⎟ ± Ne



Building an error matrix
For each error, build a error matrix, and then sum for final error matrix

Flux from π + /µ + decay

Flux from K+ decay

Flux from K0 decay

Target/Beam model

ν cross section

NC π 0 yield

Out of tank events

Optical Model

DAQ electronics model

Mij(π+)
+Mij(K+)
+Mij(K0)
+Mij(tar / beam)
+Mij(x sec)
+Mij(NCπ0)
+Mij(dirt)
+Mij(OM )
+Mij(DAQ)

= Mij(total)



Building an error matrix:
π+ production

Take existing data (HARP 8.9 GeV/c pBe π+ production data) and fit it to a
parameterization (Sanford-Wang)

d2σ(p+A->π++X) = c1pc2(c9-p/pbeam) exp[-c3 (pc4/pbeam
c5) -c6θ(p-c7pbeam cosc8 θ) ](p,θ)dp dΩ

+

The fit gives the 9 parameters
ci and their errors

The parameterization provides
correlations amongst the ci
(covariance matrix)



Building an error matrix:
π+ production

Throw the ci according to their covariance matrix and within their errors
many many times...

+ ...  = 

The error matrix: 

p1

p2

p3

Mij
π + prod =

1
throws

(Ncv − Nk)i (Ncv − Nk) j
k=1

throws

∑

shape error
total error



Building an error matrix:
light propagation in detector

For the optical model, use a combination of external and internal
measurements to produce the covariance matrix

Use measurements of oil, PMTs to
decide model’s (39!) parameters and
initial errors

Scintillation from p beam (IUCF)
Scintillation from cosmic µ
(Cincinnati)
Fluorescence Spectroscopy
(FNAL)
Time resolved spectroscopy
(JHU, Princeton)
Attenuation (Cincinnati)



Building an error matrix:
light propagation in detector

Create different ‘universes’
with the parameters varied
within errors

Compare them to muon decay
electron (Michel) sample
variables, such as time,
charge, hit topology

Keep universes which have a
good χ2 as compared to data

This restricted space defines the parameters and
correlations. Draw from the new space, and build
an error matrix:

p1

p2

p3

Mij
OM =

1
universes

(Ncv − Nk)i (Ncv − Nk) j
k=1

universes

∑

first throws

second throws



Building an error matrix:
light propagation in detector

Example: Optical model final
error matrix
 highly correlated
 highly anticorrelated
 not correlated

Mij =
ν e ν e /νµ

νµ /νe νµ

⎛
⎝⎜

⎞
⎠⎟



Error ‘budget’

All of our errors are
highly correlated, but
here are the diagonal
errors

Y

Y

Y

Y

Y

Y

Y

Y

Y

constrain
ed by
MB data?

7.5 / 10.8DAQ electronics
model

Y6.1 / 10.5Optical Model

0.8 / 3.4Out of tank events

1.8 / 1.5NC π 0 yield

Y12.3 / 10.5ν cross section

Y2.8 / 1.3Target/Beam model

Y1.5 / 0.4Flux from K0 decay

Y3.3 /1.0Flux from K+ decay

Y6.2 / 4.3Flux from π + /µ + decay

Reduced by
relating νµ  to
νe

TBL/BDT
 % error

source of uncertainty
on νe background

* shows errors before νe / νµ constraint is applied



Summary
Many oscillation experiments employ a near to far ratio to reduce their

systematic errors; MiniBooNE uses a ‘νe / νµ ’ ratio to reduce errors

MiniBooNE constrains all backgrounds with data samples

The error formalism includes all correlations between νµ and νe, which
are then exploited in the final fit
 νµ small statistical error lowers the νe effective systematic error


