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* Produce vy
= Select v,

= Observe an excess or not? Check if the
excess is consistent with oscillation
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= misidentified v, (mainly n°s)

= v, from p* decay
= v, from K*, K° decay
A = Ny

Out of tank events (‘dirt’)



Strategy

Modern neutrino beam experiments use a ‘near to far’
ratio to observe oscillations
= Directly compare initial neutrino beam to final neutrino beam
= This causes many systematic errors to cancel between the two
samples, such as flux and cross sections
MiniBooNE has no near detector, but we can still use
measurements to constrain backgrounds

Two complementary analysis approaches address
constraints

= Use a data sample to correct a background
» Fit two samples simultaneously to reduce the size of the errors



Constraints with MiniBooNE

data

Use a data sample to correct a background

= We must learn about the signal region without looking at it
(blind analysis)

= Measure pure or enhanced samples of a given background,;
rate measurements circumvent flux, cross section errors

» |nfer the shape and normalization of the background in the
signal region

= Examples: NC m° misIDs, out of tank events, v, from u decay



Constraint Example: NC n%s

Measure 1% in MiniBooNE

very pure (~90%) sample
Compare the observed 10
rate to the MC as a

function of T momentum,
and make a correction
factor

Reweight the misidentified

m% in the v, sample based
on their momentum by this
correction factor

Can also correct radiative
events A—» N + vy

M,, Mass Distribution for Various p,, Momentum Bins
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Constraint Example: Out of tank

events

Events from interactions in the
surrounding rock produce photons
which pass the veto and give events
within the inner tank ( so called “dirt”)
events

Create a sample of enhanced dirt
events
in time with beam, minimal veto activity,
1 subevent, not decay electron
low energy, high radius

Checks prediction spatial
distribution, energy spectrum of
these events; sets the normalization
for dirt events in the v, sample
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Constraint Example: v, from p*

Without employing a link between v, and v, , v, from u* would have flux,
cross section, detector uncertainties

However, for each v, produced from a u*, there was a corresponding vy
and we observe that Vv, spectrum

This is true here because the pion decay is very forward
Therefore, we know that some combination of cross sections, flux, etc

errors are excluded by our own data, and so the error is reduced
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Constraints in action

Two methods to include v, information into the v,
analysis:

" Reweight the v, based on the observed v, spectrum, and then
fit the v, s for oscillation (used in likelihood analysis)

= Fit simultaneously the v, and v, energy spectrums (used in
boosted decision tree analysis)

vy provide information to constrain errors, v, provide information for
oscillation parameters



Fit Mechanics

To fit data d to some prediction p, form a x2:

bins

XZ — 2 AiMij_lAj
i,j=1

where A = (d-p) in each energy bin i or j. 2 parameter mixing
scenario included in

(Mj)'1 is the inverse of the error matrix

Systematic (and statistical) uncertainties in M, matrix



If only it were this simple...

If M, were just statistics, it would Nt 0 0 0 O
have values along the diagonals, O N 0 0 0
and zero elsewhere. This matrix Mi=0 0 "-. 0 0

has no correlations, as each bin
contributes to the %2 only as the 0 0 0 N 0
square of itself. O 0 O 0 M

To construct this matrix for any set of
uncertainties o, one would measure

2
each o. and sum the square of the M;j = 2 o ()
error in each bin: o=1

systematics

(62 1+072+...+0%) 0 0 0 0
0 (6% 1+0%2+...4+0%): 0 0 0
M= 0 0 0

0
0 0 0 (G21+0%+...+ 021 0
0 0 0 0 (G214 G 2+...+ G o)k



... how to reality

Consider a single source of error, but now with correlations:

( o’ 210201 Pk10kO'1 )
P120102 o’ n
M;j= . .
Pikk -10kOk - 1
\ P1kO10k : Pk - 1kO'k - 10k 0’ )

Now, bin i is related to bin j by p;c,0;



Fit Mechanics

Do a combined oscillation fit to the observed v, and v, energy
distribution

J
. 174 15 17
where AY® = Datal® — Pred’*(Am?, sin® 20) and A% = Data,” — Pred;*

TE€ TEH —1 Ve
2= (A% A% ( Mg~ M ) ( x )
o M&e M NG

Note this x2 includes v, sample and v, sample bins, and a 2 parameter
oscillation scenario. M; has 4 distinct sections: v, / v, bin terms, v, /
v, bin terms, and cross terms which mix v, and v,

Ve Vel Vu

Mij —
Vu/l Ve Vu




How this helps: 2x2 case

Take just1v,, v, bin:
T [ pouce Nu+0’u

[Ne+o’e  poecu ]

Invert, and multiply by (A, A)) A= data-prediction(signal). The %2
minimizes for signal of:

Au/
signal = Ae| 1— P 17 ou
(Nu/ou+1) Ae/ oe

with an uncertainty of:

p2
stignal = Ne + 0-62 1_
(N/.L/G/.t + 1)

With p approaching 1 (high correlation) and small statistical error for v, :

"

Au/ 0}

signalee(l— - u)iNe
Ae/ Oe

or the error on the signal is limited by the statistical error, not
systematic error of the v, sample




Building an error matrix

For each error, build a error matrix, and then sum for final error matrix

Flux from n*/u* decay Mij(7c+)

Flux from K* decay +Mii(K+)

Flux from K° decay +M;;(KO)
Target/Beam model +Mi(tar | beam)
Vv cross section +Mij(x sec)

NC = ° yield +Mii(NCr0)
Out of tank events +Mi(dirt)
Optical Model +M;i(OM)

DAQ electronics model +Mii(DAQ)

= Mij(total)



do/dpde, (mb c/(GeV sr))

Building an error matrix:

n+ production

Take existing data (HARP 8.9 GeV/c pBe n* production data) and fit it to a
parameterization (Sanford-Wang)

i o wesma 4 wemew o The fit gives the 9 parameters
wlb i ] Ci and their errors
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Building an error matrix:

n+ production

Throw the ¢, according to their covariance matrix and within their errors

many many times... shape error
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Rate (1/m)

Fluorescence

Extinction or

Building an error matrix:

light propagation in detector

For the optical model, use a combination of external and internal
measurements to produce the covariance matrix
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Use measurements of oil, PMTs to
decide model’s (39!) parameters and
initial errors

=Scintillation from p beam (IUCF)

=Scintillation from cosmic u
(Cincinnati)

«Fluorescence Spectroscopy
(FNAL)

=Time resolved spectroscopy
(JHU, Princeton)

=Attenuation (Cincinnati)



Building an error matrix:

light propagation in detector

Create different ‘universes’ S .F " Elccttons from Muon Decay-atRest | m | -
W|th the parameters Va”ed % 155— —  Monte Carlo: Prompt Hits (-5,5) ns —E
W|th|n errors é 1_6;— —  Monte Carlo: Late Hits (5,150) ns —;
14 e  Data: Prompt Hits (-5,5) ns —
Compare them to muon decay = b = Delereesow E
electron (Michel) sample 0.8 =
variables, such as time, 0.6E E
charge, hit topology i .o E
01_ 08 06 04 02 0 oz 04 o5 05" :1
Keep universes which have a _
good 2 as compared to data p1 first throws

This restricted space defines the parameters and

correlations. Draw from the new space, and build o

an error matrix: .
1 universes - .

MijOM - 2 (ch — Nk)i (ch — Nk)j p2 y

universes _
k=1 second throws



Building an error matrix:

light propagation in detector

Example: Optical model final
error matrix ExX:
highly correlated
highly anticorrelated
not correlated

Ve Vel Vu
Mij —
Vu/l Ve Vu

Optical Model
correlations




Error ‘budget’

source of uncertainty | TBL/BDT constrain | Reduced by

on v, background % error ed by relating v,, to
MB data? | v,

Flux from n*/u* decay | 6.2/4.3 Y Y

Flux from K* decay 3.3/1.0 Y Y

Flux from K° decay 1.5/04 Y Y

Target/Beam model 28/1.3 Y Y

V cross section 12.3/10.5 Y Y

NC =0 yield 1.8/1.5 Y

Out of tank events 0.8/3.4 Y

Optical Model 6.1/10.5 Y Y

DAQ electronics 7.5/10.8 Y

model

* shows errors before v, / v, constraint is applied

All of our errors are
highly correlated, but
here are the diagonal
errors



Summary

Many oscillation experiments employ a near to far ratio to reduce their
systematic errors; MiniBooNE uses a 'v./ v,  ratio to reduce errors

MiniBooNE constrains all backgrounds with data samples

The error formalism includes all correlations between v, and v,, which
are then exploited in the final fit

v, small statistical error lowers the v, effective systematic error



