Systematic errors of MiniBooNE

Kendall Mahn, Columbia University for the MiniBooNE collaboration

NuFact07

Oscillation Analysis

- Observe an excess or not? Check if the excess is consistent with oscillation
- Out of tank events ('dirt')

Strategy

Modern neutrino beam experiments use a 'near to far' ratio to observe oscillations

- Directly compare initial neutrino beam to final neutrino beam
- This causes many systematic errors to cancel between the two samples, such as flux and cross sections
- MiniBooNE has no near detector, but we can still use measurements to constrain backgrounds
- Two complementary analysis approaches address constraints
 - Use a data sample to correct a background
 - Fit two samples simultaneously to reduce the size of the errors

Constraints with MiniBooNE data

Use a data sample to correct a background

- We must learn about the signal region without looking at it (blind analysis)
- Measure pure or enhanced samples of a given background; rate measurements circumvent flux, cross section errors
- Infer the shape and normalization of the background in the signal region
- Examples: NC π^0 misIDs, out of tank events, v_e from μ decay

Constraint Example: NC π^0 s

- Measure π⁰s in MiniBooNE
 very pure (~90%) sample
- Compare the observed π⁰ rate to the MC as a function of π⁰ momentum, and make a correction factor
- Reweight the misidentified π^0 s in the v_e sample based on their momentum by this correction factor
- Can also correct radiative events $\Delta \rightarrow N + \gamma$

Constraint Example: Out of tank events

- Events from interactions in the surrounding rock produce photons which pass the veto and give events within the inner tank (so called "dirt") events
- Create a sample of enhanced dirt events

in time with beam, minimal veto activity, 1 subevent, not decay electron low energy, high radius

 Checks prediction spatial distribution, energy spectrum of these events; sets the normalization for dirt events in the v_e sample

Constraint Example: v_e from μ^+

Without employing a link between ν_e and ν_μ , ν_e from $\mu^{\scriptscriptstyle +}$ would have flux, cross section, detector uncertainties

However, for each ν_e produced from a $\mu^{\scriptscriptstyle +},$ there was a corresponding ν_μ and we observe that ν_μ spectrum

This is true here because the pion decay is very forward Therefore, we know that some combination of cross sections, flux, etc errors are excluded by our own data, and so the error is reduced

Constraints in action

Two methods to include $v_{\mu}~$ information into the $v_{e}~$ analysis:

- Reweight the v_e based on the observed v_{μ} spectrum, and then fit the v_e s for oscillation (used in likelihood analysis)
- Fit simultaneously the v_{μ} and v_{e} energy spectrums (used in boosted decision tree analysis)
 - ν_{μ} provide information to constrain errors, ν_{e} provide information for oscillation parameters

Fit Mechanics

To fit data d to some prediction p, form a $\chi 2$:

$$\chi^2 = \sum_{i,j=1}^{bins} \Delta_i M_{ij}^{-1} \Delta_j$$

where $\Delta = (d-p)$ in each energy bin i or j. 2 parameter mixing scenario included in p

 $(M_{ij})^{-1}$ is the inverse of the error matrix

Systematic (and statistical) uncertainties in M_{ij} matrix

If only it were this simple...

If M_{ij} were just statistics, it would have values along the diagonals, and zero elsewhere. This matrix has no correlations, as each bin contributes to the χ^2 only as the square of itself.

To construct this matrix for any set of uncertainties α , one would measure each α and sum the square of the error in each bin:

	N_1	0	0	0	0
	0	N_2	0	0	0
$M_{ij} =$	0	0	•••	0	0
	0	0	0	N_k	0
	0	0	0	0	N_k

$$M_{ij} = \sum_{\alpha=1}^{systematics} \sigma^2_{ij}(\alpha)$$

$$(\sigma^{2}_{1} + \sigma^{2}_{2} + \dots + \sigma^{2}_{\alpha})_{1} \qquad 0 \qquad 0 \qquad 0 \qquad 0$$

$$0 \qquad (\sigma^{2}_{1} + \sigma^{2}_{2} + \dots + \sigma^{2}_{\alpha})_{2} \qquad 0 \qquad 0 \qquad 0$$

$$M_{ij} = \qquad 0 \qquad 0 \qquad \ddots \qquad 0 \qquad 0$$

$$0 \qquad 0 \qquad (\sigma^{2}_{1} + \sigma^{2}_{2} + \dots + \sigma^{2}_{\alpha})_{k-1} \qquad 0$$

$$0 \qquad 0 \qquad 0 \qquad (\sigma^{2}_{1} + \sigma^{2}_{2} + \dots + \sigma^{2}_{\alpha})_{k-1} = 0$$

... now to reality

Consider a single source of error, but now with correlations:

Now, bin i is related to bin j by $\rho_{ij}\sigma_i\sigma_j$

Fit Mechanics

Do a combined oscillation fit to the observed ν_{μ} and ν_{e} energy distribution

$$\chi^{2} = \begin{pmatrix} \Delta_{i}^{\nu_{e}} & \Delta_{i}^{\nu_{\mu}} \end{pmatrix} \begin{pmatrix} M_{ij}^{e,e} & M_{ij}^{e,\mu} \\ M_{ij}^{\mu,e} & M_{ij}^{\mu,\mu} \end{pmatrix}^{-1} \begin{pmatrix} \Delta_{j}^{\nu_{e}} \\ \Delta_{j}^{\nu_{\mu}} \end{pmatrix}$$

where $\Delta_{i}^{\nu_{e}} = \text{Data}_{i}^{\nu_{e}} - \text{Pred}_{i}^{\nu_{e}} (\Delta m^{2}, \sin^{2} 2\theta)$ and $\Delta_{i}^{\nu_{\mu}} = \text{Data}_{i}^{\nu_{\mu}} - \text{Pred}_{i}^{\nu_{\mu}}$

Note this $\chi 2$ includes v_{μ} sample and v_{e} sample bins, and a 2 parameter oscillation scenario. M_{ij} has 4 distinct sections: v_{e} / v_{e} bin terms, v_{μ} / v_{μ} bin terms, and cross terms which mix v_{μ} and v_{e}

$$M_{ij} = \begin{pmatrix} V_e & V_e / V_\mu \\ V_\mu / V_e & V_\mu \end{pmatrix}$$

How this helps: 2x2 case

Take just 1 v_{μ} , v_{e} bin: $M_{ij} = \begin{pmatrix} Ne + \sigma^{2}e & \rho\sigma e\sigma\mu \\ \rho\sigma\mu\sigma e & N\mu + \sigma^{2}\mu \end{pmatrix}$

Invert, and multiply by $(\Delta_e \Delta_\mu) \quad \Delta$ = data-prediction(signal). The $\chi 2$ minimizes for signal of:

signal =
$$\Delta e \left(1 - \frac{\rho}{(N\mu / \sigma\mu + 1)} \frac{\Delta \mu / \sigma\mu}{\Delta e / \sigma e} \right)$$

with an uncertainty of:

$$\sigma^{2}_{signal} = Ne + \sigma e^{2} \left(1 - \frac{\rho^{2}}{\left(N\mu / \sigma \mu + 1 \right)} \right)$$

With ρ approaching 1 (high correlation) and small statistical error for v_{μ} :

signal =
$$\Delta e \left(1 - \frac{\Delta \mu / \sigma_{\mu}}{\Delta e / \sigma_{e}} \right) \pm N e$$

or the error on the signal is limited by the statistical error, not systematic error of the v_e sample

Building an error matrix

For each error, build a error matrix, and then sum for final error matrix

Flux from π^+/μ^+ decay	$M_{ij}(\pi+)$		
Flux from K ⁺ decay	$+M_{ij}(K+)$		
Flux from K ⁰ decay	$+M_{ij}(K0)$		
Target/Beam model	$+M_{ij}(tar / beam)$		
v cross section	$+M_{ij}(x \sec)$		
NC π^0 yield	$+M_{ij}(NC\pi 0)$		
Out of tank events	$+M_{ij}(dirt)$		
Optical Model	$+M_{ij}(OM)$		
DAQ electronics model	$+M_{ij}(DAQ)$		

 $= M_{ij}(total)$

Building an error matrix: π + production

Take existing data (HARP 8.9 GeV/c pBe π^+ production data) and fit it to a parameterization (Sanford-Wang)

+

The fit gives the 9 parameters c_i and their errors

The parameterization provides correlations amongst the c_i (covariance matrix)

 $\frac{d^2\sigma(p+A->\pi^++X)}{dp \ d\Omega}(p,\theta) = c_1 p^{c_2}(c_9-p/p_{beam}) \exp\left[-c_3 \left(p^{c_4}/p_{beam}^{c_5}\right) - c_6 \theta(p-c_7 p_{beam} \cos^{c_8} \theta)\right]$

Building an error matrix: π + production

Throw the c_i according to their covariance matrix and within their errors many many times...

Building an error matrix: light propagation in detector

For the optical model, use a combination of external and internal measurements to produce the covariance matrix

Use measurements of oil, PMTs to decide model's (39!) parameters and initial errors

- Scintillation from p beam (IUCF)
- Scintillation from cosmic µ
 (Cincinnati)
- Fluorescence Spectroscopy (FNAL)
- Time resolved spectroscopy (JHU, Princeton)
- Attenuation (Cincinnati)

Building an error matrix: light propagation in detector

Electrons from Muon Decay-at-Rest

Hits/Event/0.02

1.8F

0.8

0.6 0.4F

-0.6

-0.4

-0.8

Create different 'universes' with the parameters varied within errors

Compare them to muon decay electron (Michel) sample variables, such as time, charge, hit topology

Keep universes which have a good χ^2 as compared to data

This restricted space defines the parameters and correlations. Draw from the new space, and build an error matrix:

$$M_{ij}^{OM} = \frac{1}{universes} \sum_{k=1}^{universes} (N_{cv} - N_k)_i (N_{cv} - N_k)_j$$

Building an error matrix: light propagation in detector

Example: Optical model final error matrix highly correlated highly anticorrelated not correlated

$$M_{ij} = \begin{pmatrix} v_e & v_e / v_\mu \\ v_\mu / v_e & v_\mu \end{pmatrix}$$

Error 'budget'

source of uncertainty on ν_{e} background	TBL/BDT % error	constrain ed by MB data?	Reduced by relating ν_{μ} to ν_{e}
Flux from π^+/μ^+ decay	6.2 / 4.3	Y	Y
Flux from K ⁺ decay	3.3 /1.0	Y	Y
Flux from K ⁰ decay	1.5 / 0.4	Y	Y
Target/Beam model	2.8 / 1.3	Y	Y
ν cross section	12.3 / 10.5	Y	Y
NC π^0 yield	<mark>1.8</mark> / 1.5	Y	
Out of tank events	0.8 / 3.4	Y	
Optical Model	6.1 / 10.5	Y	Y
DAQ electronics model	7.5 / 10.8	Y	

All of our errors are highly correlated, but here are the diagonal errors

* shows errors before ν_{e} / ν_{μ} constraint is applied

Summary

Many oscillation experiments employ a near to far ratio to reduce their systematic errors; MiniBooNE uses a ' v_e / v_μ ' ratio to reduce errors

MiniBooNE constrains all backgrounds with data samples

The error formalism includes all correlations between ν_{μ} and ν_{e} , which are then exploited in the final fit

 v_{μ} small statistical error lowers the v_{e} effective systematic error