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MiniBooNE
 

was designed to test the LSND signal 
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The three oscillation signals cannot be reconciled
without introducing Beyond Standard Model Physics



Keep L/E same as LSND 
while changing systematics, energy & event signature
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Order of magnitude
higher energy (~500 MeV)

than LSND (~30 MeV)

Order of magnitude
longer baseline (~500 m)

than LSND (~30 m)

MiniBooNE’s
 

Design Strategy



The NuMI

 

beam dips downward

Neutrino Beams at Fermilab

Main Ring Injector  120GeV

Booster 8GeVBooster Neutrino Beam
(BNB)

NuMI

 

Neutrino Beam
(BNB)
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Event Rate Predictions

#Events = Flux x Cross-sections x Detector response

External measurements 
(HARP, etc)
νμ

 

rate constrained by 
neutrino data

External and MiniBooNE
measurements
-π0, delta and dirt backgrounds
constrained from data.

Detailed detector
simulation checked 
with neutrino data and
calibration sources.

Neutrino
Green: Effective pi0’s
Blue:    Dirt
Pink:    Delta’s
Yellow: Other
Lt Blue: Nue

 

(CCQE)

Green: Effective pi0’s
Blue:    Dirt
Pink:    Delta’s
Yellow: Other
Lt Blue: Nue

 

(CCQE)

Antineutrino





 

HARP (CERN)


 

5% 

 

Beryllium target


 

8.9 GeV

 

proton beam momentum


 



 



Modeling Production of Secondary Pions

HARP collaboration,
hep-ex/0702024

Data are fit to 
a Sanford-Wang
parameterization.



Neutrino Flux from GEANT4 Simulation

Neutrino-Mode Flux Antineutrino-Mode Flux

Wrong-sign background is ~6% for Nu-Mode & ~18% for Antinu-Mode
Instrinsic

 

e

 

background is ~0.5% for both Nu-Mode & Antinu-Mode
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Fermi Gas Model describes CCQE 


 

data well
MA

 

= 1.23+-0.20 GeV
κ

 
= 1.019+-0.011

Also used to model e

 

and
 

e

 

interactions

From Q2

 

fits to MB 
 

CCQE data:
MA

eff

 

--

 

effective axial mass
κ

 

--

 

Pauli Blocking parameter

From electron scattering data:
Eb

 

--

 

binding energy
pf

 

--

 

Fermi momentum

186000 muon

 

neutrino events

14000 anti-muon

 

neutrinos


 

CCQE Scattering
A. A. Aguilar-Arevalo

 

et al., Phys. Rev. Lett. 100, 032301 (2008)




 

CCQE Scattering



coherent fraction=19.5+-1.1+-2.5%

NCpi0 Scattering
A. A. Aguilar-Arevalo

 

et al., Phys. Lett. B 664, 41 (2008)
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Appearance Oscillation Results

• Results based on 6.46 x 1020

 

POT
• Approximately 0.7x106

 

neutrino events recorded with
tank hits >200 & veto hits<6
• Approximately 1.5x105

 


 

CCQE events
• Approximately 375 e

 

CCQE events (intrinsic bkgd)
• Expect ~200 e

 

CCQE events (LSND signal)



A.A. Aguilar-Arevalo

 

et al., Phys. Rev. Lett. 98, 231801 (2007);
A.A. Aguilar-Arevalo

 

et al.,

 

Phys. Rev. Lett. 102, 101802 (2009)

MiniBooNE
 

observes a low-energy excess!



MiniBooNE e

 

appearance data show a low-energy excess
A.A. Aguilar-Arevalo

 

et al., PRL 102, 101802 (2009)

Excess from 200-475 MeV

 

= 128.8+-20.4+-38.3 events

6.46E20 POT



Number of Excess Events

Energy (MeV)

 

Data

 

Background

 

Excess

 

#tot

 

(stat

 

)

200-300

 

232

 

186.8+-26.0

 

45.2+-13.7+-22.1

 

1.7    (3.3)

300-475

 

312

 

228.3+-24.5

 

83.7+-15.1+-19.3

 

3.4    (5.5)

200-475

 

544

 

415.2+-43.4

 

128.8+-20.4+-38.3

 

3.0    (6.3)

475-1250

 

408

 

385.9+-35.7

 

22.1+-19.6+-29.8

 

0.6    (1.1)

200-1250

 

952

 

801.0+-58.1

 

151.0+-28.3+-50.7

 

2.6    (5.3)



Low-energy excess vs
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Backgrounds: Order (G2s

 

) , single photon FS?

Z0

So far no one has found  a NC 
process to account for the ,

 difference & the  low-energy 
excess. Work is in progress:
R. Hill, arXiv:0905.0291
Jenkins & Goldman, arXiv:0906.0984


Dominant process
accounted for in MC!



Sterile  Decay?

•
 

The decay of a ~500 MeV
 

sterile has been shown to 
accommodate the MiniBooNE

 
low-energy excess

–

 

Gninenko, PRL 103, 241802 (2009)



G. Karagiorgi
 

et al.,
arXiv:0906.1997

Best 3+1 Fit:
m41

2

 

= 0.19 eV2

sin22e

 

= 0.031


 

= 90.5/90 DOF
Prob. = 46%

Predicts  e
disappearance of 
sin22

 

~ 3.1% and
sin22ee ~ 3.4%

More Complicated  Oscillations?

3+1 Global Fit to World Neutrino Data Only



Event
rates

Flux

NuMI

 

event composition at MB 


 

-81%, e

 

-5%,

 

-13%,e

 

-1%

p beam , K


MiniBooNE

 

detector is 745 meters downstream of 
NuMI

 

target.
MiniBooNE

 

detector is 110 mrad

 

off-axis from the 
target along NuMI

 

decay pipe.

Energy similar to MB as off angle

MB ~0.5%

Events from NuMI
 

Directed at MiniBooNE



Excess Also Observed in NuMI
 

Data!



e

Systematic errors
will be reduced
plus 3x as much
data. 

P. Adamson et al., PRL 102, 211801 (2009)



e
 

Appearance Oscillation Results

•
 

The antineutrino data sample is especially important because   
it provides direct tests of LSND and the low-energy excess, 
although statistics are

 
low at present.

•
 

The backgrounds at low-energy are almost the same for the 
neutrino and antineutrino data samples.

•
 

First antineutrino results based on 3.386E20 POT. (Total 
collected so far ~ 5.5E20 POT.)

•
 

Approximately 0.1x106

 

antineutrino events recorded. (An order 
of magnitude fewer antineutrino events than neutrino events.)

•
 

Antineutrino analysis is the same as the neutrino analysis.



Antineutrino Results (3.39e20POT)

χ2(dof) = 24.5(19)



A.A. Aguilar-Arevalo

 

et al.,

 

PRL 103, 111801 (2009)

MiniBooNE e

 

appearance data are inconclusive at present 
but are consistent so far with LSND

Excess from 200-475 MeV

 

= -0.5 ±

 

7.8 ±

 

8.7 events

3.4E20 POT



Antineutrino Statistics & Oscillation Fit

Energy (MeV)
 

Data
 

MC
 

Excess

475-3000
 

83
 
77.4+-13.0

 
5.6+-13.0    (0.4 )

Best Fit
 

18.6+-13.2  (1.4 )
LSND Expect.

 
14.7

2

 

Null
 

2

 

LSND
 
2

 

Best

22.19/16
 

17.63/16
 

15.91/14
(13.7%)

 
(34.6%)

 
(31.9%)

Best fitm2 = 4.4 eV2, sin2
 

= 0.004
LSND Best Fit: m2

 

= 1.2 eV2, sin22
 

= 0.003



G. Karagiorgi
 

et al.,
arXiv:0906.1997

Best 3+1 Fit:
m41

2

 

= 0.915 eV2

sin22e

 

= 0.0043


 

= 87.9/103 DOF
Prob. = 86%

Predicts  e
disappearance of 
sin22

 

~ 35% and
sin22ee ~ 4.3%

3+1 Global Fit to World Antineutrino Data



MiniBooNE
 

Neutrino & Antineutrino Disappearance Limits
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MiniBooNE 90% CL sensitivity
(null) of 10.29 2χ of  5.43, 2χbest fit: (31.30, 0.96) with 

MiniBooNE 90% CL limit
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MiniBooNE 90% CL sensitivity
(null) of 10.29 2χ of  5.43, 2χbest fit: (31.30, 0.96) with 

MiniBooNE 90% CL limit

Improved results soon from MiniBooNE/SciBooNE

 

Joint Analysis!

A.A. Aguilar-Arevalo

 

et al.,

 

PRL 103, 061802 (2009)

*

*

Global best fit



Initial MINOS
 


 

Disappearance Results

Expect 

 

disappearance above
10 GeV

 

for LSND neutrino oscillations.



Future
•

 
Collect more antineutrino data! (~5.5E20 POT at present, 
~6E20 POT for Neutrino 2010, & ~1E21 POT by end of 
2011) to study low-energy excess and LSND signal directly.

•
 

Complete analysis of NuMI
 

data with reduced systematic 
and statistical errors.

•
 

Complete MiniBooNE/SciBooNE
 

joint disappearance 
analysis.

•
 

Future experiments at FNAL (MicroBooNE
 

& BooNE) should 
be able to determine whether the low-energy excess is due 
to a Standard Model process (e.g. a NC 

 
process) or to 

Physics Beyond the Standard Model (e.g. sterile neutrinos 
with CP or CPT violation or sterile neutrino decay)



Move MiniBooNE: BooNE



Move MiniBooNE: BooNE

~50 tons without oil



Move MiniBooNE: BooNE



Move MiniBooNE: BooNE



Conclusion

•

 

MiniBooNE

 

observes an unexplained excess at low energies, which 
could be due to 

 

oscillations, sterile 

 

decay, or to NC

 

scattering. 
No large low-energy excess is observed so far in antineutrino mode.

•

 

All antineutrino data fit well to a simple 3+1 model.  (LSND is alive & 
well!) However, there is tension between neutrino & antineutrino 
data. (CPT Violation?)

•

 

The global fit to the world antineutrino data predicts large 

 
disappearance, which will be tested soon by MINOS and 
SciBooNE/MiniBooNE. 

•

 

BooNE, which involves building a near MiniBooNE

 

detector, will be 
able to exploit the data taken in the far detector (the hard part!) and 
determine whether there is large 

 

disappearance and whether the 
MiniBooNE

 

low-energy excess is due to 

 

oscillations.
•

 

Thorough understanding of this short-baseline physics is of great 
importance to long-baseline 

 

oscillation experiments. BooNE

 would be a small investment to ensure their success!



Backup Slides



Possible Explanations for the Low-Energy Excess

•

 

Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density: 
Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281

•

 

CP-Violation 3+2 Model: Maltoni

 

& Schwetz, arXiv:0705.0107; T. Goldman, G. 
J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301.

•

 

Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 
095017

•

 

Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009
•

 

CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 
(2003) 303

•

 

New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan

 

Walsh, 
arXiv:0711.1363

•

 

Heavy Sterile Neutrino Decay: S.N. Gninenko, arXiv:0902.3802
•

 

VSBL Electron Neutrino Disappearance: Carlo Giunti

 

& Marco Laveder, 
arXiv: 0902:1992

•

 

Soft Decoherence: Yasaman

 

Farzan, Thomas Schwetz, & Alexei Smirnov, 
arXiv: 0805.2098

Other data sets (NuMI, antineutrino, SciBooNE) may provide an explanation!



Possible Explanations for the Low-Energy Excess

•

 

A simple beam induced or reconstruction background   NO
•

 

Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon 
Density: Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, 
arXiv:0708.1281  NO 

•

 

CP-Violation 3+2 Model: Maltoni

 

& Schwetz, arXiv:0705.0107; T. 
Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 
091301.  YES

•

 

Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 
(2005) 095017  NO

•

 

Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 
105009  YES

•

 

CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. 
B576 (2003) 303  YES

•

 

New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan

 
Walsh, arXiv:0711.1363  NO

•

 

Heavy Sterile Neutrino Decay: S.N. Gninenko, arXiv:0902.3802  YES
•

 

VSBL Electron Neutrino Disappearance: Carlo Giunti

 

& Marco Laveder, 
arXiv: 0902:1992  YES

•

 

Soft Decoherence: Yasaman

 

Farzan, Thomas Schwetz, & Alexei Smirnov, 
arXiv: 0805.2098  NO

Other data sets (NuMI, antineutrino, SciBooNE) may provide an explanation!



Implications for Low-E Excess
 (E<475 MeV)

Antineutrino

 

Neutrino
Data
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544
MC ±

 

sys+stat

 

(constr.)

 

61.5 ±

 

7.8 ±

 

8.7

 

415.2 ±

 

20.4 ±

 

38.3
Excess (σ)

 

-0.5 ±

 

7.8 ±

 

8.7 (-0.04σ)

 

128.8 ±

 

20.4 ±

 

38.3 (3.0σ)

Hypothesis

 

Stat Only

 

Cor. Syst

 

Uncor. Syst

 

#

 

Expec.

Same ν,ν

 

NC  0.1%

 

0.1%

 

6.7%

 

37.2

 
NC π0

 

scaled

 

3.6%

 

6.4%

 

21.5%

 

19.4
POT scaled

 

0.0%

 

0.0%

 

1.8%

 

67.5

 
Bkgd

 

scaled

 

2.7%

 

4.7%

 

19.2%

 

20.9

 
CC scaled

 

2.9%

 

5.2%

 

19.9%

 

20.4

 
Low-E Kaons

 

0.1%

 

0.1%

 

5.9%

 

39.7
* ν

 

scaled

 

38.4%

 

51.4%

 

58.0%

 

6.7

* Best fit is where excess scales only with neutrino flux!



Antineutrino Excess Events



Antineutrino Allowed Region

E
QE

 

> 475 MeV

Sensitivity



Low-energy excess vs
 

EvisLow-energy excess vs
 

Evis

With E
QE

 

Best Fit (3.14 eV2, 0.0017)



Low-energy excess vs
 

Q2



 Values from Data/MC Comparisons

Process      (cos)/9 DF     (Q2)/6 DF     Factor Inc.*

NC 
 

13.46  2.18                 2.0

N16.85                   4.46                 2.7

e

 

C -> e-

 

X      14.58                    8.72                 2.4

e

 

C -> e+

 

X      10.11                   2.44                 65.4

*
 

Any single bkgd
 

would have to increase by !



MiniBooNE

Alabama, Bucknell, Cincinnati, Colorado, 
Columbia, Embry-Riddle, Fermilab, Florida, 
Illinois, Indiana, Los Alamos, LSU, MIT, 
Michigan, Princeton, Saint Mary’s, Virginia 
Tech, Yale
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Neutrino Backgrounds

Background

 

200-300 MeV

 

300-475 MeV

 

475-1250 MeV



 

CCQE

 

9.0

 

17.4

 

11.7


 

e 

 

e

 

6.1

 

4.3

 

6.4
NC 

 

103.5

 

77.8

 

71.2
N

 

19.5

 

47.5

 

19.4
External

 

11.5

 

12.3

 

11.5
Other

 

18.4

 

7.3

 

16.8

e

 

from 

 

13.6

 

44.5

 

153.5
e

 

from K+

 

3.6

 

13.8

 

81.9
e

 

from KL

 

1.6

 

3.4

 

13.5

Total Bkgd

 

186.8+-26.0

 

228.3+-24.5

 

385.9+-35.7





• 541 meters downstream of target

• 3 meter overburden

•12.2 meter diameter sphere

(10 meter “fiducial”

 

volume)

•

 

Filled with 800 t  

of pure mineral oil (CH2

 

)

(Fiducial

 

volume: 450 t)

•

 

1280 inner phototubes,

240 veto phototubes

•

 

Simulated with a GEANT3 Monte Carlo

The MiniBooNE
 

Detector



10% Photocathode coverage

Two types of 
Hamamatsu Tubes:
R1408, R5912

Charge Resolution:
1.4 PE,  0.5 PE

Time Resolution
1.7 ns, 1.1ns



Rejecting “muon-like”
 

events
Using log(Le

 

/L

 

)

log(Le

 

/L

 

)>0 favors electron-like hypothesis

Note:  photon conversions 
are electron-like.
This does not separate e/0.

Separation is clean at 
high energies where 
muon-like  events are long.

Analysis cut was chosen
to maximize the 


 

 e

 

sensitivity

e

 

CCQE


 

CCQEMC



B
LI

N
D

e
π0

Invariant Masse π0

BLIND

Monte Carlo π0

 

only

Testing e-0 separation using data
1 subevent
log(Le

 

/L

 

)>0 (e-like)
log(Le

 

/L

 

)<0 (-like)
mass>50  (high mass)

log(Le

 

/L

 

)

invariant masssignal



Neutral Current
 

0 Scattering

Neutrino

Antineutrino

A. A. Aguilar-Arevalo

 

et al., Phys. Lett. B 664, 41 (2008)



• Check many low level quantities (PID stability, etc)
• Rechecked various background cross-section and rates

(0, N, etc.)
• Improved 0

 

(coherent) production incorporated.
• Better handling of the radiative

 
decay of the ∆

 
resonance

• Photo-nuclear interactions included.
• Developed cut to efficiently reject “dirt”

 
events.

• Analysis threshold lowered to 200 MeV, with reliable errors.
• Systematic errors rechecked, and some improvements made

(i.e. flux, N,
 

etc).
• Additional data set included in new results:

Old analysis:    5.58x1020

 

protons on target.
New analysis:   6.46x1020

 

protons on target.

Recent Improvements in the Analysis 



Fit invariant mass peak in each momentum range

Δ→N

 
also constrained 

(Re)Measuring
 

the π0

 

rate versus π0 momentum

0-0.1 0.1-0.2 0.2-0.3

0.3-0.4 0.4-0.5 0.5-0.6

0.6-0.8 0.8-1.0 1.0-1.5



A single 

 

is indistinguishable from an 
electron in MiniBooNE

Photonuclear processes can remove (“absorb”) 
one of the gammas from NC

 

0

 

  event
–

 

Total photonuclear absorption cross sections
on Carbon well measured.

+N+N

Giant

 

Dipole

 

Resonance

Photo-nuclear absorption of 0 photon

Photonuclear absorption recently added to
our GEANT3 detector Monte Carlo.

●

 

Extra final state particles carefully 
modelled

●

 

Reduces size of excess
●

 

Systematic errors are small.
●

 

No effect above 475 MeV

π0

Photon absorbed
By C12

Remaining photon 
Mis-ID as an electron



External Events (“dirt”)

Evis

RED: CCQE Nue
BLACK: Background occur at large radius

inwardly directed 

low energy

shower

dirt

There is a significant background 
of photons from events occurring
outside the fiducial

 

volume
(“Dirt”

 

events)

MC:

The background can be largely 
eliminated with an energy dependent 
fiducial

 

cut (rtowallb)
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Comparing Neutrino Low Energy
 

e

 

Candidates
 with & without dirt cut

Without Dirt Cut With Dirt Cut

EQE
EQE



Flux from +/+

 

decay 1.8 2.2    √
Flux from K+

 

decay

 

1.4 5.7

 

√
Flux from K0

 

decay 0.5 1.5

 

√
Target and beam models

 

1.3 2.5

 

√

-cross section 5.9 11.8

 

√
NC 0

 

yield

 

1.4  1.8

 

√
External interactions (“Dirt”) 0.8  0.4

 

√
Detector Response

 

9.8  5.7

 

√
DAQ electronics model

 

5.0 1.7     √

Hadronic

 

0.8                0.3

 

√
Total Unconstrained Error

 

13.0               15.1

Source of 
Uncertainty
On e

 

background

Checked or 
Constrained 
by MB data

Track Based
error in %

200-475 MeV 475-1250 MeV

Sources of Systematic Errors



 

CCQE events constrain x

 



 

!



Fit method

The following three distinct samples are used in the oscillation

 

fits 
(fitting e

 



 

energy spectra)

1.

 

Background

 

to νe

 

oscillations
2.

 

νe

 

Signal

 

prediction (dependent on Δm2, sin22θ)
3.

 

νμ

 

CCQE

 

sample, used to constrain νe

 

prediction 
(signal+background)

signal bkgd νμ

 

CCQE

si
gn

al
bk

gd
ν μ

C
C

Q
E

Syst+stat

 

block-3x3 covariance matrix in Eν
QE

 

bins
( in units of events2 ) for all 3 samples

―

―

collapsed to block-2x2 matrix (νe

 

and νμ

 

CCQE)

 

for χ2

 

calculation

_ _

Matrix is actually 53x53 (in Eν
QE

 

bins) !



Low-energy excess vs
 

Evis

With Evis

 

Best Fit (0.04 eV2, 0.96)
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