A Search for $v_{u} \rightarrow v_{s}$ oscillations with MiniBooNE

MiniBooNE does not yet have a result for the $v_{\mu} \rightarrow v_{e}$ oscillation search. The analysis is in final stages.

Outline:

- Goal of experiment
- MB detector
- status of the analysis

Primary goal of MiniBooNE is a $v_{\mu} \rightarrow v_{e}$ search to test the LSND result. LSND reports a (4 σ) excess of \overline{v}_{a} events (87.9 ± 22.4 ±6.0) in \overline{v}_{a} beam LSND \overline{v}_{a} events vs energy LSND oscillation parameters 35 30 20 25 $\Delta m^2 (eV^2)$ 10 Beam Excess LSND $\rho(\nabla_{\mu} \rightarrow \nabla_{e'} e^{t})n$ $\nu_{\mu} \rightarrow \nu_{e}$ p(v_e,e⁺)n other 10 20 15 10 Atmospheric $\nu_{\mu} \rightarrow \nu_{X}$ 10 10 5 Solar MSW 10 $v_e \rightarrow v_x$ 0 10 10 -2 10 -3 10 -1 25 30 35 55 20 45 50 60 40 $\sin^2 2\theta$ E_e MeV

MiniBooNE v_{μ} beam

MiniBooNE Detector

- 800 tons mineral oil (CH_2), viewed by 1280 8" PMTs (10% coverage)
- veto to tag entering/exiting particles
- Particle ID, energy, position, angle via Cerenkov and scintillation light

Oscillation analysis

```
observed rate of v_e events in detector =

P(v_{\mu} \rightarrow v_e)

\times flux (v_{\mu})

\times cross-section (v_e)

\times detector and reconstruction efficiency

+ backgrounds
```

- A large sample of v_{μ} -interaction events allow for measurements of many of these quantities (e.g. cross section, π^0 background)
- Many systematic errors on the measured $\nu_{_{e}}$ rate are reduced by measuring the $\nu_{_{\mu}}$ events.

neutrino flux

- predominantly from pion decay ($\pi^{\scriptscriptstyle +} \,{\rightarrow}\, \mu \, \nu_{_{\mu}}$)
- determined from pBe data from BNL E910 @6,12 GeV, HARP @ 8.9 GeV
- with a "Sanford-Wang" parameterization

fits to HARP data

- similar procedure is used for Kaons (@10-24 GeV)

cross section

- measured via the large v_{μ} CCQE* data sample in MB

- data used to tune a fermi gas model (within NUANCE evevent generator)

- binding energy, fermi momentum from e-scattering data on carbon
- effective axial-mass (M_A) and
 Pauli-blocking parameter
 determined from MB data
- cross section applies to $v_{\rm e}^{}\text{CCQE}$

MB v_{μ} CCQE data

detector simulation

- uses GEANT tuned to external and internal measurements
- required <u>extensive</u> investigation of light propagation in detector
- data/MC agreement is good as can be seen in this inclusive charged-current (CC) sample (tagged by muon decay).

MB inclusive CC data

R. Tayloe, Indiana U. DNP06 8

reconstruction algorithms

boosting PID output for NuMI data

2) likelihood-based analysis

- NuMI data/MC shown here for each method

backgrounds

- intrinsic-v_ backgrounds (from v_ produced at v source)
 - $\mu \rightarrow \nu_{_{e}}$: (indirectly) measured in $\nu_{_{\mu}}$ CCQE events
 - $-\pi \rightarrow v_{e}$: " " "
 - $K \to \nu_{_{e}}$: measured in high-energy $\nu_{_{\mu}}$ CCQE (from Kaons), extrapolate to low-E
- non- v_{e} backgrounds
 - Beam Off: measured, negligible
 - CC Inclusive: simulated, tied to data
 - NC π^0 : measured (see next page)
 - NC $\Delta \rightarrow N\gamma$: small, yet non-negligible, tied to data, handled in MC
 - NC Coherent γ : calculated, negligible
 - NC Radiative γ : calculated, negligible
 - v interactions outside tank ("dirt" events), simulated, checked in data
 - beam-unrelated events, determined from random triggers, neglibible

NC π^0 production

- Rate of NC $\pi^{\rm 0}$ production is measured as function of $\pi^{\rm 0}$ momentum
- Used to estimate NC π^{0} background in oscillation sample
- π^o reconstructed mass distribution is described well in MC simulation

R. Tayloe, Indiana U. DNP06 11

Status

- We are performing a "blind" analysis to avoid experimenter bias (signal region is kept in a "closed-box")
- Plot shows possible (LSND) signal with measured/calculated backgrounds
 - high-energy data overlaid
 - low-energy data
 (signal) in
 "closed-box" region
- Currently in final stages of analysis
- When finished, we will "open the box" on the low-E oscillation sample

- And will report result for $\nu_{\mu} \rightarrow \nu_{_{e}}$ oscillations