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ABSTRACT

A Combined v, and v, Oscillation Search at MiniBooNE

Jocelyn Rebecca Monroe

MiniBooNE seeks to corroborate or refute the unconfirmed oscillation result from
the LSND experiment. If correct, the result implies that a new kind of massive
neutrino, with no weak interactions, participates in neutrino oscillations. MiniBooNE
searches for v, — v, oscillations with the Fermi National Accelerator Laboratory 8
GeV beam line, which produces a v, beam with an average energy of ~0.8 GeV and an
intrinsic v, content of 0.4%. The neutrino detector is a 6.1 m radius sphere filled with
C H,, viewed by 1540 photo-multiplier tubes, and located 541 m downstream from the
source. This work focuses on the estimation of systematic errors associated with the
neutrino flux and neutrino interaction cross section predictions, and in particular, on
constraining these uncertainties using in-situ MiniBooNE v, charged current quasi-
elastic (CCQE) scattering data. A data set with ~100,000 events is identified, with
91% CCQE purity. This data set is used to measure several parameters of the CCQE
cross section: the axial mass, the Fermi momentum, the binding energy, and the
functional dependence of the axial form factor on four-momentum transfer squared.
Constraints on the v, and v, fluxes are derived using the v, CCQE data set. A
Monte Carlo study of a combined v, disappearance and v, appearance oscillation fit
is presented, which improves the v, — v, oscillation sensitivity of MiniBooNE with

respect to a v, appearance-only fit by 1.2 - 1.50, depending on the value of Am?.
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right: number of K wvs. Ok (radians) at production. Figure from

reference [65]. . ...
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3.2

3.3

3.4

3.5

3.6

Top: Summary of modern experiments which measure p Be — X
i a region of interest to MiniBooNE. Bottom: Transverse momen-
tum (GeV) vs. Tpeynman for ™ production experiments, overlaid with
the MiniBooNE beam Monte Carlo prediction for mF-decay v in the

MiniBooNE detector acceptance. . . . . . . . . . . . . .. ... ...

HARP [78] experiment measured inclusive m production cross section
(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. ©+
momentum (GeV/c), at pproton = 8.9 GeV/c. Error bars include statis-

tics and systematics. . . . . . ... Lo

E910 [T7] experiment measured inclusive 7+ production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. ©*+
momentum (GeV/c), at pyroton = 0.4 GeV/c. Error bars include statis-

tics and systematics. . . . . . . .. L

E910 [T7] experiment measured inclusive 7+ production cross section
(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. 7+
momentum (GeV/c), at pproton = 12.3 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o

Left: best-fit Sanford-Wang inclusive 7% production cross section (milli-
barns/GeV/c/steradian) vs. © momentum (GeV/c) for various an-
gles, at pproton = 8.9 GeV/c. Right: best-fit Sanford-Wang inclusive
7t production cross section (milli-barns/GeV/c/steradian) vs. proton

momentum (GeV/c), evaluated at (pr,0,) = (1.8 GeV/c,5.4°).
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3.7

3.8

3.9

3.10

3.11

Top: Summary of experiments which measure pBe — KX in a region
of interest to MiniBooNE. Bottom: Transverse momentum (GeV) vs.
T Feynman Jor KT production experiments, overlaid with the MiniBooNE
beam Monte Carlo prediction for K*-decay v in the MiniBooNE detec-

tor acceptance. . . . . . . L Lo

Left: Aleshin [80] experiment measured inclusive K+ production cross
section (milli-barns/GeV /c/steradian) in proton-beryllium interactions
vs. KT momentum (GeV/c), at pproton = 9.5 GeV/c. Right: Vorontsov
[83] experiment measured inclusive K+ production cross section (milli-
barns/GeV/c/steradian) in proton-beryllium interactions vs. K+ mo-
mentum (GeV/c), at pproton = 10.1 GeV/c. Error bars include statis-

tics and systematics. . . . . . ... Lo

Abbott [79] experiment measured inclusive K™ production cross section
(milli-barns/GeV /c/steradian) in proton-beryllium interactions vs. K+
momentum (GeV/c), at ppoton = 14.6 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o

Piroue [82] experiment measured inclusive K production cross section
(milli-barns/GeV/c/steradian) in proton-beryllium interactions vs. K+
momentum (GeV/c), at ppoton = 2.74 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o

FEichten [81] experiment measured inclusive K+ production cross sec-
tion (milli-barns/GeV /c/steradian) in proton-beryllium interactions vs.
K+ momentum (GeV/c), at Dproton = 24.0 GeV/c. Error bars include

statistics and systematics. . . . . .. ..o
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3.12 Left: best-fit Sanford-Wang inclusive K+ production cross section (milli-

3.13

3.14

3.15

3.16

3.17

3.18

barns/GeV/c/steradian) vs. K+t momentum (GeV/c) for various an-
gles, at pproton = 8.9 GeV/c. Right: best-fit Sanford-Wang inclusive
K™ production cross section (milli-barns/GeV/c/steradian) vs. pro-

ton momentum (GeV/c), evaluated at (pk,0x) = (2.9 GeV/c,6.8°).

Left: inelastic p-Be cross section data (mb) vs. incident proton mo-
mentum (GeV/c). Right: inelastic m*-Be cross section data (mb) vs.
incident ™ momentum (GeV/c). The MiniBooNE beam Monte Carlo
fit and the GHEISHA hadronic interaction model curves are overlaid.

Figure from reference [90]. . . . . . .. ... .

Left: v, fluz prediction by parent vs. Monte Carlo generated v, energy
(GeV). Right: v, fluz prediction by parent vs. Monte Carlo generated

v, energy (GeV). ..o oL

Left: v, flux prediction by parent vs. Monte Carlo generated U, energy
(GeV). Right: U, flux prediction by parent vs. Monte Carlo generated
v, energy (GeV). .. oL

Charged current neutrino cross section measurements divided by neu-
trino energy vs. E, (GeV ); the curves are fit to the data to guide the

eye. Figure from reference [95]. . . . . . .. ..o,

NUANCE prediction compared with experimental data. v,n — p p
cross section (mb) vs. E, (GeV'). Figure courtesy of [46]. Predictions
assume my = 0.084 GeV/c* and ma = 1.032 GeV/c2. . . . .. . ..

Charged current quasi-elastic scattering diagrams. . . . . . . . . . ..

Xx1i1

85

87

90

90

96



3.19

3.20

3.21

3.22

3.23

Comparison of absolute numbers of events calculated using the Mini-
BooNE neutrino flux for bound (dashed) vs. free (solid) v, CCQE scat-
tering, for an arbitrary number of p.o.t.. Top left: number of events
vs. p, (GeV/c). Top right: number of events vs. 0, (degrees). Bottom
left: number of events vs. E, (GeV). Bottom right: number of events

vs. Q% (GeV?). ..

Final-state muon momentum smearing due to the Smith-Moniz bound
nucleon CCQE cross section model. Left: muon momentum (GeV/c)
for MiniBooNE CCQE events generated at the average (E,,Q*) =
(0.9 GeV, 0.3 GeV?) after event selection cuts for different values of
the Fermi momentum kr (GeV/c). The dashed line shows the free
nucleon cross section value. Right: quasi-elastic neutrino energy reso-
lution vs. true Monte Carlo neutrino energy (GeV). EQT is calculated

from 2-body kinematics using the generated p,,, cos(0,). . . . . . . ..

NUANCE prediction compared with experimental data. Left: v,p —
pwprT cross section (¢cm?) vs. E, (GeV). Right: v,n — p~nwt cross

section (cm?) vs. E, (GeV). Figure courtesy of [{6]. . . . . . . . ..

Left: number of tank hits for Michel electrons. Right: number of tank
hits for muons tagged by the external muon tracker and stopping in the
scintillator cube with T), ~ 0.8 GeV'. Data is shown by points, Monte

Carlo is the solid histogram. . . . . . . . . . .. ... . ... ...

Left: corrected angle for Michel electrons. Right: corrected time for
Michel electrons. Data is shown by points, Monte Carlo is the solid

histogram. . . . . ...
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3.24

3.25

3.26

3.27

4.1

Corrected time distributions of tank PMT hits for stopping muon events
in the siz deepest cubes. The event vertex and time are measured using
the cubes and muon tracker. Data is shown by points, Monte Carlo is

the solid histogram. . . . . . . . . ..

Corrected angle distributions of tank PMT hits for stopping muon events
in the siz deepest cubes. The event vertex and time are measured using
the cubes and muon tracker. Data is shown by points, Monte Carlo is

the solid histogram. . . . . . . . . . . .. .

Left: reconstruced Michel electron energy (MeV). Right: muon energy
as determined by the reconstruction vs. cube range energy calculated
from the muon path determined using the external muon tracker and
the scintillator cubes inside the tank. Data is shown by points, Monte

Carlo is the solid histogram. . . . . . . . . . . ... .. ... ...,

Left: angular resolution from the scintillator cube system, for T, =
0.770 GeV . Right: Enerqgy resolution from the scintillator cube system,
forT,, = 0.770 GeV. Data is shown by points, Monte Carlo is shown

by the solid histogram. . . . . . . . . . ...

Variables that are used in the v, CCQE selection “pre-cuts”. Left: the
number of sub-events; middle: the number of veto PMT hits in the first
sub-event; right: the number of veto PMT hits in the second sub-event.
Data with statistical errors (black points) are compared with the Monte
Carlo total (solid black line), Monte Carlo signal (dotted red line), and
Monte Carlo background (dotted blue line) predictions. Data and the

total Monte Carlo curves are normalized to unit area. No cuts are
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4.2

4.3

4.4

Variables that are used in the v, CCQE selection Michel distance “pre-
cut” for the first sub-event. Top left: the number of tank PMT hits;
top middle: the total charge in the first sub-event; top right: the re-
constructed muon energy (GeV). Bottom left: the reconstructed radius
of the track center (m); bottom middle: the reconstructed track direc-
tion; bottom right: the reconstructed Michel distance (m). Data with
statistical errors (black points) are compared with the Monte Carlo to-
tal (solid black line), Monte Carlo signal (dotted red line), and Monte
Carlo background (dotted blue line) predictions. Data and the total
Monte Carlo curves are normalized to unit area. The first four “pre-

cuts” are applied. . . . . . ..

Efficiencies of the v, CCQE selection “pre-cuts” vs. Monte Carlo neu-
trino enerqy (GeV). The first five panels from top left to bottom right
show the efficiency of each “pre-cut” individually. The bottom right
panel shows the efficiency of all “pre-cuts” combined. The efficiency
is shown for all Monte Carlo events (solid black line), Monte Carlo
signal (dotted red line), and Monte Carlo background (dotted blue line)

Predictions. . . . . . .. e

Variables that are used in the v, CCQE selection Fisher discriminant
cut. Top left: the Fisher discriminant output variable; all other pan-
els: Fisher discriminant input variables. Data with statistical errors
(black points) are compared with the Monte Carlo total (solid black
line), Monte Carlo signal (dotted red line), and Monte Carlo back-
ground (dotted blue line) predictions. Data and the total Monte Carlo

curves are normalized to unit area. The five “pre-cuts” are applied.
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4.5

4.6

4.7

4.8

Correlations of the Fisher discriminant input variables in Monte Carlo
for signal (red) and background (blue). Only unique combinations of

variables are shown. . . . . . . . . . . L

Optimaization of the Fisher discriminant cut. Left: Monte Carlo pre-
diction for the signal (black solid line) and background (red dashed line)
fractions remaining after a cut on the Fisher output variable > the ab-
cissa value. Right: Monte Carlo prediction for the signal (black solid
line) and background (red dashed line) cut efficiencies after a cut on

the Fisher output variable > the abcissa value. . . . . . . . . . . ..

Efficiency and resulting purity of the v, CCQE selection cuts vs. Monte
Carlo neutrino energy (GeV). Left: efficiency of the Fisher cut relative
to events that pass the “pre-cuts”; middle: efficiency of all v, CCQFE
selection cuts relative to no cuts; right: v, CCQE signal and back-
ground after all selection cuts. Distributions are shown for all Monte
Carlo events (solid black line), Monte Carlo signal (dotted red line),

and Monte Carlo background (dotted blue line) predictions. . . . . . .

v, CCQE selection cut efficiencies vs. reconstructed neutrino energy
(GeV) in data (black points with statistical errors) and Monte Carlo
(solid black line). Right: efficiency of the Michel distance cut relative
to events passing the first four “pre-cuts”. Left: efficiency of the Fisher

output variable cut relative to events passing all “pre-cuts”. . . . . . .

XXVIl

140

141

142



4.9

4.10

Comparison of kinematic variables after the v, CCQE selection cuts.
Top left: reconstructed track angle with respect to the beam direction;
top right: reconstructed energy under a muon hypothesis (GeV); bottom
left: reconstructed neutrino enerqy assuming 2-body kinematics (GeV);
bottom right: reconstructed four-momentum transfer squared (GeV?).
Data with statistical errors (black points) are compared with the Monte
Carlo total (solid black line), Monte Carlo signal (dotted red line), and
Monte Carlo background (dotted blue line) predictions. Data and the

total Monte Carlo curves are normalized to unit area. . . . . . . . . .

Measurement resolution as a function of kinematic variables, for Monte
Carlo events passing the v, CCQE selection cuts. Top left: recon-
structed - generated difference vs. generated primary track angle with
respect to the beam direction; top right: (reconstructed - generated)
/ generated vs. generated muon energy (GeV); bottom left: (recon-
structed - generated) / generated vs. generated neutrino energy (GeV);
bottom right: (reconstructed - generated) / generated vs. generated
four-momentum transfer squared (GeV?). Error bars are the r.m.s. of

a gaussian fit to the residual distributions. . . . . . . . . . ... ...
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4.11

4.12

4.13

Comparison of kinematic variables after the v, CCQE selection cuts,
absolutely normalized to protons on target. Top left: reconstructed track
angle with respect to the beam direction; top right: reconstructed energy
under a muon hypothesis (GeV); bottom left: reconstructed neutrino
energy assuming 2-body kinematics (GeV); bottom right: reconstructed
four-momentum transfer squared (GeV?). Data with statistical errors
(black points) are compared with the Monte Carlo total (solid black
line), Monte Carlo signal (dotted red line), and Monte Carlo back-

ground (dotted blue line) predictions. . . . . . . . . . ... ... ...

Ratio of data to Monte Carlo after v, CCQE selection cuts as a func-
tion of kinematic variables, absolutely normalized to protons on target.
Top left: reconstructed track angle with respect to the beam direction;
top right: reconstructed energy under a muon hypothesis (GeV); bottom
left: reconstructed neutrino enerqy assuming 2-body kinematics (GeV);
bottom right: reconstructed four-momentum transfer squared (GeV?).

Error bars include data and Monte Carlo statistics only. . . . . . . .

Components of the calculation for propagating the errors on the Sanford-
Wang nt flux prediction parameters to the distribution of EMC for
events passing the v, CCQE selection cuts. Top left: distribution of
“unisims,” top middle: central value Monte Carlo number of events vs.
EMC with errors from the m* fluz prediction, top right: fractional er-
ror vs. EMC. Bottom eight panels show the rows of the first derivative

MATTIT. . . . .
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4.14

4.15

4.16

Unisim distributions for m* flux simulation uncertainties after the v,
CCQE selection cuts, absolutely normalized to protons on target. Top
left: reconstructed track direction cosine with respect to the beam direc-
tion; top right: reconstructed energy under a muon hypothesis (GeV);
bottom left: reconstructed neutrino energy assuming 2-body kinematics

(GeV); bottom right: reconstructed four-momentum transfer squared

(GeV2).

Unisim distributions for neutrino interaction cross section simulation
uncertainties after the v, CCQE selection cuts, absolutely normalized
to protons on target. Top left: reconstructed track direction cosine with
respect to the beam direction; top right: reconstructed energy under
a muon hypothesis (GeV); bottom left: reconstructed neutrino energy
assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV?). . . . . ... ... ... ...,

Unisim distributions for detector response simulation uncertainties af-
ter the v, CCQE selection cuts, absolutely normalized to protons on
target. Top left: reconstructed track direction cosine with respect to
the beam direction; top right: reconstructed energy under a muon hy-
pothesis (GeV); bottom left: reconstructed neutrino energy assuming

2-body kinematics (GeV); bottom right: reconstructed four-momentum

transfer squared (GeV?). . . . . . ...
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4.17

4.18

4.19

Uncertainty on the Monte Carlo prediction for the number of events
after the v, CCQE selection cuts, absolutely normalized to protons
on target, from the © fluz simulation and the neutrino interaction
cross section simulation. Top left: reconstructed track direction co-
sine with respect to the beam direction; top right: reconstructed energy
under a muon hypothesis (GeV); bottom left: reconstructed neutrino
energy assuming 2-body kinematics (GeV); bottom right: reconstructed
four-momentum transfer squared (GeV?). The data (black points) with

statistical errors is superimposed. . . . . . . . ... ...

Contribution to the fractional error on the Monte Carlo prediction for
the number of events after the v, CCQE selection cuts, absolutely nor-
malized to protons on target, from the © flux simulation, and the
neutrino interaction cross section simulation. Top left: reconstructed
track direction cosine with respect to the beam direction; top right: re-
constructed energy under a muon hypothesis (GeV); bottom left: recon-
structed neutrino enerqy assuming 2-body kinematics (GeV); bottom

right: reconstructed four-momentum transfer squared (GeV?).

Uncertainty on the Monte Carlo prediction for the fraction of events
after the v, CCQE selection cuts, normalized to unit-area, from the
7t flur simulation and the neutrino interaction cross section simula-
tion. Top left: reconstructed track direction cosine with respect to the
beam direction; top right: reconstructed energy under a muon hypothe-
sis (GeV); bottom left: reconstructed neutrino energy assuming 2-body
kinematics (GeV); bottom right: reconstructed four-momentum trans-
fer squared (GeV?). The data (black points) with statistical errors is

superimposed. . .. .. ..o e
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4.20 Contribution to the fractional error on the Monte Carlo prediction for

5.1

5.2

5.3

the fraction of events after the v, CCQE selection cuts, normalized
to unit-area, from the =% flux simulation and the neutrino interaction
cross section simulation. Top left: reconstructed track direction cosine
with respect to the beam direction; top right: reconstructed energy under
a muon hypothesis (GeV); bottom left: reconstructed neutrino energy
assuming 2-body kinematics (GeV); bottom right: reconstructed four-

momentum transfer squared (GeV?). . . . . .. ... ... ... ..

Left: E, (GeV)vs. Ex (GeV) forv, fromn* decay, in the MiniBooNE
detector acceptance. Reft: E, (GeV) vs. E. (GeV) for v, from u*
from 7" decay, in the MiniBooNE detector acceptance. A line with
slope 0.43 is super-imposed to indicate the maximum available energy

to the v, in a 2 body % decay. . . . .. ..o,

Left: number of events vs. reconstructed neutrino energy (GeV) for
events passing the v, CCQE selection cuts. Right: reweighted number
of events vs. reconstructed neutrino energy (GeV) for events passing
the v, CCQE selection cuts. Central value Monte Carlo is indicated
by the points, Sanford-Wang ©* prediction “unisim” Monte Carlo is

shown by the lines. . . . . . . . . ...

Left: generated Monte Carlo energy distributions. Right: reweighted
Monte Carlo energy distributions. Top: number of events vs. ©+ en-
ergy (GeV). Middle: number of events vs. u* energy (GeV). Bottom:

number of events vs. v, energy (GeV). . .. ...
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5.4

9.5

5.6

5.7

Ratio of Sanford-Wang ™+ prediction “unisims” to central value Monte
Carlo for events passing the v, CCQE selection cuts. Left: reweight-
ing functions vs. reconstructed v, energy (GeV). Right: reweighting

functions vs. generated ©* energy (GeV). . . . . . . ... ... ...

Ratio of Sanford-Wang w prediction “unisims” to original central
value Monte Carlo vs. EMC (GeV), with no selection cuts applied.
Left: predicted n*-decay v, energy spectra. Right: predicted p*-decay

Ve ENETQY SPECITA. . . . . . . . . o

Error on p*-decay ve EMC spectrum from Sanford-Wang 7+ predic-
tion uncertainties. Top eight panels: scaled first derivatives (defined in
equation 4.16) vs. EMY. Bottom left: predicted number of events vs.
EMC (GeV) with n+ prediction systematic errors for 2.2 x10% protons
on target. Bottom right: fractional error vs. EM® (GeV). Red solid

lines (black points) show the (un-) fit error calculation. . . . . . . ..

Error on u*-decay ve. EMC spectrum from “fake data”-reweighted San-
ford - Wang © prediction uncertainties. Top eight panels: scaled first
derivatives (defined in equation 4.16) vs. EMC. Bottom left: predicted
number of events vs. EMC (GeV) with ©+ prediction systematic er-
rors for 2.2 x10*' protons on target. Bottom right: fractional error
vs. EMC (GeV). Red solid lines (black points) show the (un-) fit error

calculation. . . . . . . L
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5.8

5.9

5.10

5.11

Error on pt-decay v, EMC spectrum from data-reweighted Sanford -
Wang 7t prediction uncertainties. Top eight panels: scaled first deriva-
tives (defined in equation 4.16) vs. EMC. Bottom left: predicted num-
ber of events vs. EMC (GeV) with nt prediction systematic errors for

2.2 x10?* protons on target. Bottom right: fractional error vs. EMC

(GeV'). Red solid lines (black points) show the (un-) fit error calculation.194

EMC

MC spectrum from Sanford-Wang © predic-

Error on 7t -decay v,
tion uncertainties. Top eight panels: scaled first derivatives (defined
in equation 4.16) vs. EMC. Bottom left: predicted number of events
vs. EMC (GeV) with ©* prediction systematic errors for 2.43 x10%

protons on target. Bottom right: fractional error vs. EMC (GeV). Red

solid lines (black points) show the (un-) fit error calculation. . . . . .

Error on " -decay v, EMC spectrum from "fake data”-reweighted Sanford-

Wang 7t prediction uncertainties. Top eight panels: scaled first deriva-
tives (defined in equation 4.16) vs. EMC. Bottom left: predicted num-
ber of events vs. EMC (GeV') with w* prediction systematic errors for

2.43 x10% protons on target. Bottom right: fractional error vs. EMC

(GeV). Red solid lines (black points) show the (un-) fit error calculation.198

Error on 7" -decay v, EMC spectrum from data-reweighted Sanford-
Wang 7" prediction uncertainties. Top eight panels: scaled first deriva-
tives (defined in equation 4.16) vs. EMC. Bottom left: predicted num-
ber of events vs. EMC (GeV) with ©* prediction systematic errors for

2.48 x10% protons on target. Bottom right: fractional error vs. EM¢

(GeV'). Red solid lines (black points) show the (un-) fit error calculation.199
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6.1

6.2

6.3

6.4

6.5

6.6

6.7

Measurements of ma from neutrino scattering (left) and pion electro-
production (right) experiments, assuming a dipole form for Fa(Q?).

This figure is from reference [102] . . . . . . . . ... ... ... ..

X2 function value vs. fit parameter value for a fit with statistically iden-
tical “fake data” and Monte Carlo samples. Left: x* vs. Eg (GeV).
Middle: x? vs. pp (GeV). Right: x* vs. ma (GeV/c?). . .. .. ...

Left: number of events before (dashed, red line) and after (solid, green
line) fitting “fake data” with Monte Carlo vs. reconstructed Q* (GeV?).
Right: x* value vs. reconstructed Q* (GeV?) at the best-fit point. . . .

Number of events vs. reconstructed Q* (GeV?) for oscillated (red,
dashed line) and un-oscillated (black, solid line) “fake data” with the
statistics of the data. Left: number of events absolutely normalized to

protons on target. Right: number of events normalized to the data. . .

Left: number of events vs. reconstructed Q* (GeV?) in “fake data”
for all neutrino interaction types (black, solid line), v, CCQE events
(red, dashed line), and backgound events (blue, dotted line). Right:
fraction of v, CCQE (red, dashed line) and background (blue, dotted

line) events vs. reconstructed Q* (GeV?). . . .. ... ... ...

x? function value vs. fit parameter value for a fit to data. Left: x? vs.

Ep (GeV). Middle: x* vs. pr (GeV). Right: x* vs. ma (GeV/c?). . .

Left: number of events before (dashed, red line) and after (solid, green
line) fitting data with Monte Carlo vs. reconstructed Q* (GeV?). Right:

X% value vs. reconstructed Q* (GeV'?) at the best-fit point. . . . . . . .
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6.8

6.9

6.10

6.11

6.12

6.13

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q? bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE data

(black points) with statistical errors are superimposed. . . . . . . . . .

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q* bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE data

(black points) with statistical errors are superimposed. . . . . . . . . .

Impact of CCQE parameter changes in Monte Carlo for events passing
the v, CCQE selection cuts. Left: number of events (top), fraction of
events (bottom) vs. reconstructed Q* (GeV?). Right: number of events

(top), fraction of events (bottom) vs. reconstructed ESY (GeV ). . . .

Left: measurements of Fa4 vs. Q% from neutrino scattering data di-
vided by the dipole assumption, with predictions from lattice gauge the-
ory (dashed line) and a duality-based model (solid line); figure from
reference [128]. Right: measurements of Fa vs. Q* from pion electro-

production data; figure from reference [102]. . . . . . . ... ... ..

Impact of changing the axial form factor functional dependence on Q?
in Monte Carlo for events passing the v, CCQE selection cuts. The
“dipole form” (black, solid line) and “alternative form” (red, dashed
line) are explained in the text. Both use (ma, Eg, pr) = (1.03 GeV/c?,
0.025 GeV', 0.220 GeV ). Left: number of events vs. reconstructed Q?

(GeV?). Right: number of events vs. reconstructed EYE (GeV'). . . .

x? function value vs. fit parameter value for a fit with statistically
identical “fake data” and Monte Carlo samples. Top left: x* vs. Ep
(GeV). Top right: x* vs. pr (GeV). Bottom: x* vs. Fa in Q* bins.
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6.14

6.15

6.16

6.17

6.18

6.19

6.20

Left: Fy4 before (red, open squares) and after (green, solid squares)
fitting “fake data” with Monte Carlo vs. Q* (GeV?). Right: x* value

vs. reconstructed Q* (GeV?) at the best-fit point. . . . . . . . . . ...

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q* bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE “fake

data” (black points) with statistical errors are superimposed. . . . . .

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q* bin before (red, dashed line) and after (green, solid

line) fitting for CCQE cross section parameters. The v, CCQE “fake

data” (black points) with statistical errors are superimposed. . . . . .

Number of Monte Carlo events vs. reconstructed E, (GeV') in each
Q% e bin for oscillated (red, dashed line) and un-oscillated (black, solid
line) “fake data” with the statistics of the data. The number of Monte

Carlo events is absolutely normalized to protons on target. . . . . . .

Number of Monte Carlo events vs. reconstructed E, (GeV') in each
Q% e bin for oscillated (red, dashed line) and un-oscillated (black, solid
line) “fake data” with the statistics of the data. The number of Monte

Carlo events is normalized to the “fake data.” . . . . . . . . . .. ..

Left: Fu before (red, open squares) and after (black, filled circles) fit-
ting data with Monte Carlo vs. Q* (GeV?). Right: x* value vs. recon-
structed Q* (GeV?) at the best-fit point. . . . . . . . ... ... ...

x? function value vs. fit parameter value for a fit to data. Top left: x*?

vs. Ep (GeV). Top right: x* vs. pr (GeV). Bottom: x? vs. Fy in Q*
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6.21

6.22

6.23

7.1

7.2

Number of events vs. reconstructed neutrino energy (GeV) in each
reconstructed Q? bin before (red, dashed line) and after (green, solid
line) fitting for CCQE cross section parameters. The v, CCQE data

(black points) with statistical errors are superimposed. . . . . . . . . .

Number of events vs. reconstructed neutrino energy (GeV) in each
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Chapter 1

Introduction

In the Standard Model of particle physics neutrinos are massless particles, however,
neutrino flavor oscillation data conclusively demonstrates the existence of neutrino
mass. As such, massive neutrinos are the only experimentally verified occurrence of

physics beyond the Standard Model at the present time.

Neutrinos are unique in the Standard Model for two reasons. First, they are the
only nearly-massless fermions, lighter than the next-lightest particle, the electron,
by at least 5 orders of magnitude. Second, only left-handed neutrinos have ever
been observed, via their participation in weak interactions, and since neutrinos are
now known to be massive, there must be right-handed neutrinos as well, if neutrinos
are Dirac particles like all other constituents of the Standard Model. These strange
properties of the neutrino sector raise a number of questions. Given that neutrinos do
have mass, how is that mass generated, and why is it so small? Are there right-handed

neutrinos, and if so, where are they?

The neutrino oscillation data pose these questions, and more, since all of the
positive signals cannot be accomodated with only three neutrinos. The MiniBooNE

experiment seeks to corroborate or refute the unconfirmed evidence that a new kind



of massive neutrino, which is “sterile”, participates in neutrino oscillations.

1.1 Field Theory of Neutrino Mass

The Dirac Lagrangian for a spinor field ¥ is of the form

L = i(hc)Uy"9,¥ — (mc*)WW. (1.1)

The Euler-Langrange equation, applied to ¥ gives
oL oL

— =0, —= = ihcy"9, ¥V — mc*V
0(0,Y) ov
which is the Dirac equation for a massive spinor

Vg

. VL

o, ¥ — (mc/h)¥ =0, V= (1.2)
(V)R
()L

The mass term for leptons in the Lagrangian density for the Standard Model, written

in terms of the left and right-handed projections, is of the form

following the notation of reference [1]. However, this is not the only Lorentz invariant
quantity that is quadratic in the fields, and therefore there can be other mass terms.
From the fermion fields W, Vg, (U€), (V) g and the adjoint fields, the unique and

non-vanishing combinations are
(\I/_L\I/R + h.C.), ((@)R\IJL + h.C.), ((@)L\PR + hC)

where h.c. is the hermitian conjugate, and W€ is the charge conjugate field. The most

general free-field Lagrangian density for the field ¥ is

_ . My — Mg, —
L =Ty,0"0+ MD[\I/L\I/R+h.c.]+TL[(‘IIC)R\PL+h.c.]+TR[(\IJC)L\I/R+h.c.] (1.4)



where the new constants Mp, My, and Mgz have dimensions of mass, and correspond

to the Dirac mass term, and the Majorana mass terms respectively.

In terms of the chiral fields f and F',

U U )¢ v Pgr)©
o Bt (W)t et (TR) (1.5)
V2 V2
the Lagrangian density becomes
L = f1,0.f+Fy.0,F + Mp(fF + Ff)+ Myff+ MgrFF (1.6)
_ _ _ | My Mp f
= F1u0uf + Fru0uF + |F,F]
Mp Mg F
The neutrino mass matrix M is real and symmetric in this basis,
M, M
M= (1.7)
Mp Mg

and has eigenvectors v/ and N. In terms of the eigenvector fields, the Lagrangian
density is

L = V0,V + Nv,0.N + M, V'V + MyNN, (1.8)

which is the free-field Lagrangian for not one, but two particles, v/ and N, which are

the mass eigenstates of the neutrino mass matrix.

The initial Dirac fermion field ¥ had four states: two spin states of a particle,
Ur and Uy, and two anti-particle spin states (U¢)g and (V°),. The defining char-
acteristic of a Majorana particle is that it is CPT self-conjugate, i.e. ¥, = (¥p)°
and Vp = (Vg)° [2]. To respect the number of degrees of freedom of the initial
Lagrangian, the mass eigenstates, / and N must each have only 2 spin states, and
are therefore Majorana fermions. Hence, the additional Majorana mass terms in the
Dirac Lagrangian split the four mass-degenerate states of the Dirac field ¥ into two

non-degenerate Majorana fermions v’ and N.



Standard Model: Massless Dirac Neutrinos

In the Standard Model, with massless Dirac neutrinos, the left-handed neutrino field
and lepton of the same family form an SU(2) doublet, while the right-handed lepton

is an isosinglet. The first generation fields are:

vy

€R er
In this case, the neutrino mass eigenstates are degenerate, and there is no difference
between the mass and flavor eigenstates, which are both are described by f in equa-
tion 1.5. Generalizing to three generations, an important consequence is that there
can be no mixing whatsoever between the lepton families. For a Lagrangian density
of the form £ = W~,0"¥, there is no mixing between left and right handed states
either, and so in addition to the mass and flavor eigenstates being identical, chirality
is preserved as well. Therefore, electron number, muon number, tau number, and
chirality are strictly conserved, separately, in weak interactions [3], and there can be

no neutrino oscillations.

From the experimental point of view, the Standard Model contains no right-
handed neutrino fields because neutrino mass had not been observed when the theory
was constructed. From the gauge theory point of view, the Standard Model neutrino
is massless because in the SU(2)xU(1) theory, there are no Lorentz invariant mass
terms to which the Higgs can couple. From either vantage point, neutrino mass has
now been observed, and must be accomodated in the theory. This can be done with

extensions of the Standard Model in either the lepton or the Higgs sectors.



Beyond the Standard Model: Massive Neutrinos

If the Standard Model lepton sector is extended by adding W, the fields of the first

generation SU(2) doublets are

Vg vy,
€R €L
For massive Dirac neutrinos, M; and Mg are zero in the neutrino mass matrix of

equation 1.6, and the Lagrangian density is

_ _ 10 Mp f
L = [90uf + Fy0.F +[f, F] - (1.9)

Mp 0 F
This Lagrangian density connects left and right handed components of the same fields
since f ~ (W4 (¥°)) and F' ~ (Vi + (¥°)R), and therefore the massive field terms
are ~ Mp(U W +h.c.). The Lagrangian density, in terms of the flavor states, can be
diagonalized with a change of basis to have mass eigenstates which are combinations

of left and right handed fields as in equation 1.5. In terms of the flavor eigenstates,

considering only the first two generations for simplicity, the mass term is [4]
L = My Vele + My, VVp + Moy, (Ve + Tpve) (1.10)
which can be diagonalized by the choice of bases
Ve = cosBvy + sinfuo; v, = —sinfuvy + cosfus. (1.11)

For 6 # 0, the mass eigenstates are not equal to the flavor eigenstates. Under this
change of basis, £ becomes the Lagrangian density for two particles, v; and v,. These

states evolve in time as
[Ve(t) > = cos e vy > +sinf e 2y > (1.12)

wu(t) > = —sind e Py > +cosh ey, >;



where B, = \/W, Ey, = \/W, and p is the neutrino momentum.
The ansatz is made that the momentum p of the mass eigenstates is the same, but
the energies are different; an identical result is arrived at for the converse assumption.
The original number of degrees of freedom in the Lagrangian have been preserved in
this transformation since there were initially two flavor states, and here there are two

mass eigenstates. Therefore, these are Dirac, not Majorana, neutrinos.

If m; # mso, then the electron neutrino and muon neutrino flavor eigenstates
propagate with different frequencies, which gives rise to the quantum mechanical
phenomenon of neutrino oscillations [4]. The probability of oscillation between flavor

states for a pure electron neutrino flavor state at time ¢ = 0 is

Ey, — Ey)t
Plv. —v,) = | <vylv(t) > |* = sin%@shﬂ(%) (1.13)
1 L
= sin20sin’ (7 Am* )
sin=20sin™( ZAm" 2= ).

with A = ¢ = 1, and the approximation that the energies of the propagating mass

eigenstates i are F; = \/p> +m? ~ p+

distance travelled by the neutrino between production and detection, and FE, is the

2
m; . .
5.+ The factor Am? is [m3 — m7|, L, is the

neutrino energy.

As a result, if the mass eigenstates are not equal to the flavor eigenstates, and
the mass eigenstates are not degenerate, then even with purely Dirac mass terms,
lepton flavor number is not individually conserved. The sum of the lepton numbers
Liota = Le + L, + L; is conserved, since no leptons are disappearing into thin air,
however, because neutrinos can oscillate between flavors, individual lepton number,
e.g. L., is no longer conserved. While this is a departure from the Standard Model,
is it not entirely unexpected, since there is no analogue of individual lepton number
conservation in the quark sector. Instead, there is the larger symmetry of baryon

number conservation.



Generalizing to three generations and assuming CP and CPT invariance, the
probability for neutrino oscillations is [5]:
n
P(vo — vg) = 6o —4Y  UajUs UailUsisin’e;; (1.14)
i>j
where « and [ index the weak eigenstates (e, i, 7), i and j index the mass eigenstates
(1, 2, 3), n is the number of generations, U is the neutrino mixing matrix, and x;; is
the oscillation frequency given in terms of experimental quantities (1.27Am§,iL,, /E.,),
where Am? is the difference of the squares of the masses for eigenstates j and i, L,
is the distance travelled by the neutrino between production and detection, F, is the
neutrino energy, and the 1.27 comes from including factors of A and c¢. The unitary
matrix U describes the mixing betwen the weak and mass eigenstates, which for three

generations is given by:

Uel Ue? UeS
U= |Un Usp Us |- (1.15)
UTl UT2 UT3

This matrix has six independent elements, which can be written in terms of mixing

angles and complex phases [5]

10 0 13 0 sp0e™ 12 S12 O
U= 10 c35 $23 0 10 —S12 ¢ 0| X (1.16)
0 —s23 ca23 —81’262'6 0 ¢ 0 0 1
€ 0 0
0 €% 0
0 0 1

where ¢; ; and s; ; are abbreviations for sinf; ; and cosf); ;, 0 are the mixing angles
between mass eigenstates i and j, and 9, a1, and ap are the matrix phases. If neutrinos

are Dirac particles, then the matrix can be written in terms of only one phase, 9.



The question of why the neutrino masses are so much smaller than other fermion
masses has not yet been addressed here, and purely Dirac mass terms in the La-
grangian density cannot solve this problem easily for the following reason. In a
minimal extension of the Standard Model, which includes a Wy field, the sponta-
neous symmetry breaking that leads to Dirac neutrino mass also leads to the fermion
masses. The Yukawa coupling for a Higgs field ® to the Dirac neutrino field W is of
the form Uz®¥ ;. One would expect that the Dirac mass Mp would be of the order
of the symmetry breaking scale, that is, the non-zero vacuum expectation value of
the Higgs field (®). When SU(2) is spontaneously broken in this way, the fermions
and weak gauge bosons acquire mass at this scale. If there are no non-zero Majorana
terms in the neutrino mass matrix, then neutrinos also acquire a mass at the scale of
the Dirac mass, which must be of the order of MeV'. Since no MeV-mass neutrinos
have been observed, there must be a mechanism for the suppression of fermion scale

neutrino mass by many orders of magnitude [6].

The canonical mechanism for the suppression of neutrino mass involves an exten-
sion of the Standard Model in both the lepton and Higgs sectors, which requires the
right-handed state Wi and non-zero Majorana mass terms. If two new Higgs fields
are introduced, Ag and Ay, in addition to the original field ®, then the mass terms

allowed by isospin invariance in the Dirac Lagrangian density are
Up @ W, (VL) 'AL¥r,  (Vr)Ar¥a

For the general free-field Lagrangian density of equation 1.4, when the SU(2) sym-
metry is spontaneously broken by non-zero vacuum expectation values of the Higgs
fields, the terms quadratic in the neutrino field have Mp ~ (®), M, ~ (Ar), and
Mg ~ (Apg). Constraints on the values of the additional Higgs fields’ expectation
values come from the ratio of the W boson mass to the Z mass, which effectively

restrict (Ap) and therefore My, to be zero [7]. A second consideration comes from



the coupling of the right-handed Higgs field Ag to the gauge bosons: since no Wr is
observed, the mass scale for the breaking of chiral symmetry must be much greater
than that of the electroweak symmetry breaking, and so there is a hierarchy of the
vacuum expectation values of the Higgs fields: (Ag) > (®). It is conventional to

take Mp > Mp. In this case, the neutrino mass matrix is of the form

0 Mp
M = (1.17)
Mp Mg
with eigenvalues
My ~ Mg, My ~ —Mb (1.18)
N ~ R, v~ MR .
and eigenvectors
Mp Mp
N~F+ — '~ f - —ZF. 1.19

This result leads to the see-saw relation [8], which connects the neutrino mass scale

to the Dirac mass scale of the quarks (Myuer = Mp):
M, My = M0 (1.20)

Therefore, with the addition of Higgs fields to generate the Majorana mass terms,
the very tiny size of the neutrino mass can be motivated by having a right-handed
neutral heavy lepton isosinglet. For example, if M, = 1 eV, and My = 200
MeV, then My must be 4 x 106 eV/.

With this potential solution to the problem of small neutrino mass, one might
ask whether the addition of Majorana mass terms to the Standard Model Lagrangian
density has any effect on the masses of other fermions. Fortunately, the answer is
no, because Majorana particles are self-conjugate under CPT transformations, and
therefore cannot carry electric charge. The quarks are charged, and so the addition
of Majorana mass terms to the Standard Model Lagrangian affects only the neutrino

sector.



10

If neutrinos are Majorana particles, then there are additional consequences be-
yond flavor oscillations in the neutrino sector. Rewriting the chiral states that can
participate in the weak interaction in terms of the Majorana mass eigenstates gives,

for example,
Mp

= V+VN; V = — 1.21
f v+ s MR’ ( )

which contains both the left- and right-handed mass eigenstates v and N of one
generation, where vy, ~ 1/ and vy ~ N, with V setting the degree of mixing. There
is, therefore, a small probability for the weakly interacting left-handed neutrino to

oscillate into a right-handed neutral heavy lepton of the same flavor, given by [1]

Mp* M,
P Ny ~ V? = = , 1.22
(v — Np) M7 My (1.22)
which for the previous numerical estimate gives V. = 2.5 x 1078, Oscillation from

vy, — Vg is equivalent to a matter - anti-matter oscillation, since for Majorana parti-
clesvg = — (v1)° This process violates lepton flavor number by 2 units, and so with
the addition of Majorana mass eigenstates, lepton number conservation is completely

violated, and not even the sum of the individual lepton numbers can be conserved.

In summary, the extension of the Standard Model to accommodate non-zero neu-
trino mass has a number of interesting implications that may be elucidated by testing
individual and total lepton number conservation laws. Neutrino flavor oscillations are
possible only if neutrinos have mass, the mass eigenstates have different masses, the
mixing between mass and flavor eigenstates is non-zero, and right-handed neutrinos
exist. Further, depending on whether the mass is Dirac or Majorana in nature, even
more exotic transformations are possible. If neutrinos are Majorana particles, they
may also oscillate between left-handed and right-handed, or matter and anti-matter

states.
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1.2 Experimental Evidence for Neutrino Mass

Conclusive evidence for neutrino mass was discovered in 1998 by the Super-Kamiokande
experiment’s observation of neutrino oscillations [9]. This phenomenon can only oc-
cur if neutrinos have mass, and their masses are different, as in equation 1.13. This
was the result that convinced the particle physics community at large that neutrinos

oscillate, and it inspired a generation of new experiments.

Neutrino oscillation experiments can use several different kinds of neutrino beams:
those produced in collisions of cosmic rays with the earth’s atmosphere, those pro-
duced in solar fusion processes, those produced in nuclear reactors, and those pro-
duced at accelerator facilities. The phenomenon of neutrino oscillations has been
observed in all of these types of experiments, however, the specific observations differ
sigificantly. Combining oscillation measurements can map out the neutrino mixing
matrix of equation 1.14, determine the neutrino mass hierarchy, and possibly even
discover new physics in the neutrino sector. However, neutrino oscillation searches
measure the mass difference Am?, rather than the neutrino mass itself, and so while
oscillation experiments provide evidence of mass they cannot measure the absolute

scale. Therefore, this type of experiment is an indirect search for neutrino mass.

Direct neutrino mass measurements are experimentally very difficult because neu-
trino masses are so small, of the order of eV or less. Direct searches have historically
tried to measure neutrino mass using conservation of energy and precision measure-
ments of the final state kinematics in weak decays. So far they have only set upper
limits on the values of the neutrino masses. Another class of direct mass searches seeks
to measure the Majorana mass term using the rate of neutrino-less double beta de-
cay (Ovf33). These measurements have also mostly resulted in upper limits, however,

there is one controversial signal which indicates a non-zero Majorana mass.
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Table 1.1: Direct neutrino mass measurement results in units of eV . Table from

reference [11]. References for each result are given in the text.

Vr ‘ i
< 18.2x10° | < 0.7-1.0

Ve ve Majorana | v,

<22 ‘ < 0.24 ‘ < 0.17x108

Recently, precision astrophysical data have also been used to set limits on the
sum of the neutrino masses. These measurements are in a sense both direct and
indirect because while they have sensitivity to the absolute scale of neutrino mass,
many theoretical assumptions about the evolution of the universe are necessary to

extract a limit.

One additional constraint on the neutrino sector that is very important for neu-
trino mass searches is the limit on the number of weakly-interacting, or “active”,
neutrinos. The LEP experiments in combination measure this from the lineshape of
the decay width of the Z-boson to be 2.92 + 0.07. [10]. This constraint plays a role in
combining measurements from oscillation experiments, and in model-building needed

to interpret astrophysical data.

Direct Searches

The best current direct neutrino mass measurement results are summarized in table
1.1. These include limits on the v, mass from (-decay, limits on the v, mass from
7w decay, limits on the v, mass from 7 decay, as well as searches for Majorana mass,

and astrophysical limits on the sum of the neutrino masses.

Direct searches for the mass of the v, use the 3 decay of tritium via >H — 3He e,

where the underlying process is n — p e~ T.. The electron kinetic energy spectrum



13

can be predicted analytically,

dl’ G?
5 = N0t (O)MPF(E, Z+1) p(E +mee®) - (1.23)

S Py = Vi = B) - U\ (B — Vi = B)? = m2(v)e!
2

where N is the number of parent nuclei, G is the Fermi constant, ©, is the Cabibbo
angle, M is the nuclear decay matrix element, F(E,Z + 1) is the Fermi function,
p is the electron momentum, m, is the electron mass. P; is the probability to find
a final state with a daughter nucleus with excitation energy V;, and |U,;|* is the
probability to find a neutrino in mass eigenstate m(v;). Ej is the endpoint of the
electron spectrum in the case of m, = 0.0, which is the @) value of the decay minus
the energy of the daughter nucleus. By comparing the measured endpoint of the
electron kinetic energy spectrum with Fj, experiments extract an upper limit on the
7, mass. The best limit comes from the Mainz experiment, which measures m%e =
-1.6 4= 2540 £ 2.1y, eV?/c*, which is usually expressed as a limit my, < 2.2 eV
at 95% confidence level [12]. The planned KATRIN experiment is projected to have

sensitivity down to my, = 0.3 eV [18].

Direct mass searches for the v, and v, mass are based on a similar concept of
precisely measuring the final state kinematics of weak decays and comparing with the
predicted spectrum. The best v, mass limit comes from high precision measurements
of the ™ momentum in 7% — pv, decays from a stopped pion beam at the PSL.
The experimental result is mlz,u = —0.016 £0.023 MeV?, which is converted into an
upper limit of 0.17 MeV at 90% confidence level [14] !. The experimental precision

is limited by the muon momentum measurement accuracy. The v, mass searches use

the decays 7= — 27 7, and 7= — 37 27" (7%)v, at the ALEPH experiment. The

!This analysis assumed that the v, is created in a mass eigenstate, which is not strictly correct

now that neutrino oscillations have been conclusively established.
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experimental result is derived from fitting the visible energy distribution as a function
of invariant mass, with m,_ as a free parameter. The final state identification and
energy resolution of the detector are the limiting factors in the experimental precision.

The resulting limit is m,, < 18.2 MeV at 95% confidence level [15].

The Majorana or Dirac nature of the neutrino is probed by neutrino-less double
beta decay (0v(3(3) experiments, which seek to directly measure the Majorana mass
component of the v,. Double beta decay is a rare process predicted by the Standard
Model weak interaction in which a nucleus that is stable against single beta decay
can decay by a double weak interaction via A(Z, N) — A(Z+2,N —2)+2e” +27,.
Typical nuclei that posess this property are “°Ge, 1Mo, and ¥2Se. This process
changes the charge of nucleus by 2 units, and two neutrinos are emitted. Neutrino-less
double beta decay measurements search for interactions where no neutrinos emerge.
If neutrinos have non-zero Majorana mass, the emitted 7, from the first beta decay
can interact as a v, within the nucleus and instigate the second beta decay signature
via v,n — e~ p. This requires Majorana mass because for the neutrino to interact
as both 7, and v, it must be its own anti-particle. The Majorana mass experiments
measure the half-life for (0vG3) [T, 10/”2]_1, which depends on the “effective” Majorana

mass (m,) via
TV = GY(Ey, Z 2 MO — g4 2M0” 2 1.24
[ 1/2] (Eo, Z)[(mu)|7| f g arl (1.24)

where G%(Fy, Z) is related to the kinematic phase space for the decay, (%) are
the familar weak interaction axial and vector charges, and M})” and M2 are nuclear
decay matrix elements. The “effective” Majorana mass is really a sum over mass

eigenstates [5]:

m; (1.25)

(m) = Z |Uei

where ¢ indexes the (Majorana) mass eigenstates m, and U, ; are the neutrino mixing

matrix elements. These searches are quite difficult because very low noise conditions
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are necessary, a large amount of data is required, and the matrix elements have
large uncertainties of order 50%. The best limit is set by the Heidelberg-Moscow
experiment, (m) < 0.2 eV at 90% confidence level [19], however, a sub-set of this
experiment also reports a positive signal, 0.11 eV < (m) < 0.56 eV [20], which is
very controversial [21]. The sensitivity of future (Ov(/3) experiments is projected to

be (m) ~0.01 eV [22].

An interesting corollary is that Majorana mass terms in the neutrino mass matrix
also cause the appearance of a right-handed isosinglet partner of the left-handed
neutrino. Experimental searches for the neutral heavy lepton set an upper limit on
the mixing probability V between v and N, of ~ 107% at my = 5 GeV, however,
three anomalous events were observed in a 2 GeV - 10 GeV mass neutral heavy lepton

search at the NuTeV experiment [23].

The sum of the neutrino masses can be inferred from astrophysical data combined
with models for the evolution of cosmic matter density fluctuations. There are ~100
v/em? in free space, and therefore even a small neutrino mass would have a signif-
icant impact on the matter distribution in the universe. Precision measurements of
the matter density fluctuations are sensitive to the total mass of neutrinos because
neutrinos tend to suppress small-scale fluctuations [24]. The degree of suppression

depends on the mass of neutrinos as [25]

APy %
Py o QM

(1.26)

where Py, is the power spectrum of matter density fluctuations, €2, is the fraction of
the universe’s mass carried by neutrinos, and €2, is the total matter mass fraction.
The absence of small-scale fluctuation suppression is interpreted as an upper limit on
the sum of the neutrino masses. The current limit which is most model-independent

is > ,m; < 2.1 eV at 95% confidence level [16]. A more agressive limit can be
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derived by using data other than the small-scale power spectrum to constrain model

uncertainties, in this case the limit is ) . m; < 0.7 eV at 90% confidence level [17].

With the exception of Ov 33 searches, all of the direct neutrino mass measurements
are sensitive only to Dirac neutrinos that interact via the weak interaction, that is,
left-handed neutrinos that couple to the W and Z bosons. Neutrino oscillations and
Majorana mass raise the possibility of right-handed neutrinos that mix only with the
light, weakly interacting neutrinos. These hypothetical particles would be “sterile”
in the sense that they would not participate in the weak interaction. In contrast to
the direct neutrino mass measurements, oscillation searches are sensitive to “sterile”

neutrinos, and in fact, require them to accomodate all of the current oscillation results.

Indirect Searches

Neutrino oscillation experiments typically cast their results in terms of the neutrino
mass eigenstate difference Am? and the degree of mixing between a particular mass
and weak eigenstate, given by a mixing angle sin®20. These quantities are directly
related to the mass eigenstates if only two are involved, however, they may be “effec-
tive” parameters, that is, useful for describing an experiment’s observation but not
the physical quantities involved in oscillations, in cases where more than two mass
eigenstates participate. Different neutrino experiments are sensitive to different pa-
rameter combinations, due to the energy and composition of their neutrino beam,

and the distance of the detector from the neutrino source.

Oscillation searches can be categorized experimentally as “appearance” or “dis-
appearance:” in an “appearance” analysis one searches for the oscillation of one flavor
into another, e.g. v, — v,, while in a “disappearance” analysis the experimental ob-
servation is that the rate and/or energy spectrum of interactions of a particular flavor

is reduced with respect to the expectation, e.g. fewer v, are measured than expected.
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In contrast to direct mass searches, neutrino oscillations can produce very large ex-
perimental signals, of the order of 50% effects, depending on the underlying oscillation
parameters. The experimental constraints on the neutrino oscillation parameter space
are summarized in figure 1.1, which includes the results from atmospheric neutrinos,

solar neutrinos, reactor neutrinos, and accelerator neutrino experiments.

Atmospheric neutrinos typically travel a distance between production and detec-
tion of a few hundred km if coming from straight overhead (zenith angle of 0°) or
~10,000 km if travelling upwards through the earth (zenith angle of 180°), and have
energies ranging from sub-GeV to multi-GeV. Therefore, in the oscillatory term in
the oscillation probablity, sin%%), Am? must be of order 1072-1072 for
the term to be near a maximum. This roughly determines the oscillation parameter
sensitivity of atmospheric neutrino experiments. Neutrinos produced in the atmo-
sphere possess a very useful property for oscillation measurements, which is that the
predicted ratio of of v, to v, is well understood. When cosmic rays, which are mostly
protons, interact with the atmosphere, they produce the following chain of reactions:

+ (y_e)(u_:. This chain of interactions

(i) pN — 7X, (i) 7* — pF (1/_#), (iii) pu* — e
produces 2 v, flavor particles for each v, flavor. Therefore the accessible oscillation
channels are (I/;) disappearance, (y;) disappearance, and (V7,3—>(y7€) oscillations, however,
atmospheric neutrino detectors typically cannot distinguish v from 7. To reduce the
systematics associated with predicting the absolute rate of atmospheric neutrino pro-
duction, experiments typically measure the ratio of the observed to predicted v,:v.
ratio, or the ratio of ratios. In the absence of oscillations this should 1.0, however,
the Super-Kamiokande observation is that the ratio is 0.65-0.7. The conclusive piece
of evidence for atmospheric neutrino oscillations was the observation of zenith angle

dependence of the ratio of ratios consistent with the prediction of the oscillation hy-

pothesis [9]. The current best measurement of the atmospheric neutrino oscillation
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parameters is 1.5 x 107 < Am3; < 3.4 x 107%eV? and sin®20,5 > 0.92 at 90%
confidence level, from the Super-Kamiokande experiment [26]. The subscript (2, 3)
indicates that the oscillations observed by atmospheric neutrino experiments are pri-
marily due to the participation of neutrino mass eigenstates 2 and 3 and v, — v,

transitions.

Solar neutrinos travel much longer distances between production and detection,
L~ 10® km, and have very low energies ~10 MeV , consistent with fusion products.
The composition of solar neutrinos should be pure v, given the processes associated
with solar fusion, and the predicted rate of solar neutrino production has very small
errors because the visible luminosity, which is is strongly correlated with the fusion
rate, is well measured. A deficit of solar neutrinos with respect to the predicted
rate was first observed in the 1950s, and was termed the “solar anomaly” [27]. It
was not until recently when experiments observed an energy spectrum deformation
characteristic of oscillations that the “solar anomaly” was resolved. Historically, solar
neutrino oscillation experiments could only detect v, and search for oscillations via
v, disappearance, therefore they did not take advantage of the beam composition
information. However, the recent SNO experiment was designed to measure not
only the v, from the sun, but also search for solar v, and v, which could only be
produced by v, — v, ; oscillations. SNO observes a ~50% deficit of v, with an energy
spectrum consistent with the oscillation prediction, and a relative excess of v, and
v, events combined [28]. In combination with previous solar neutrino experiments,
this gives the best current measurement of the solar oscillation parameters, Ami2
= 6.5753eV? and tan?20,, = 0.45700% at 1o [29]. The subscript (1,2) indicates
that the oscillations observed by solar neutrino experiments are primarily due to the

participation of neutrino mass eigenstates 1 and 2 and v, — v, transitions.

Reactor neutrino beams are very similar in energy spectrum to solar neutrinos,
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because they are side-products of fission, with typical energies of a few Mel/. Unlike
solar neutrinos, reactor beams are composed exclusively of .. An attractive feature
of reactor neutrino beams is that the predicted energy spectrum has very small uncer-
tainties. Reactor neutrinos are radiated isotropically, therefore detectors are usually
sited within 1 &m of the source, which determines the sensitivity to oscillation pa-
rameters. The experimental channel for oscillation searches is 7, disappearance, and
until recently, reactor neutrino oscillation experiments had only set limits because
they didn’t see any signals. However, the KamLAND experiment, which was specifi-
cally designed to have sensitivity to the allowed solar oscillation parameter space and
has a baseline of ~180 km, observes a deficit with an energy spectrum consistent
with oscillations in agreement with the solar oscillation results [30]. The current best
oscillation parameter measurement from KamLAND in combination with the solar

neutrino data is Am?, = 8.070%eV? and tan?26, , = 0.457407 at 1o [29]

Accelerator neutrino experiments are unique in that they can control both the
energy of the neutrino beam and the distance of the detector from the source. In
principle this allows for more controlled experimental conditions. Accelerator neutrino
beams are composed of either v, or 7, from 7% decays, with small backgrounds from
(z;e). The accessible experimental channels are (1;,3 disappearance, (u;) appearance, and
possibly even v, appearance. Only one short-baseline accelerator neutrino oscillation
experiment has observed a signal: the LSND experiment, which searched for v, — 7,
in a 7, beam with 20 < E, < 60 MeV and an L, of 30 m, observes an excess
consistent with 0.2 < Am? < 10 eV? over a range of 0.003 < sin?20 values < 0.03.
The best-fit point is (Am?, sin?20) = (1.2 eV?, 0.003) [31], corresponding to an
oscillation probability of ~0.3%. Precisely which mass eigenstates are involved in the

oscillations observed by LSND is unknown. Other short-baseline accelerator neutrino

experiments did not observe signals and therefore set limits, none of which quite cover
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the same region of parameter space as the LSND result. Two long-baseline accelerator
neutrino experiments, both of which were designed specifically to have sensitivity to
the allowed atmospheric oscillation parameter space, have observed oscillation signals.
The MINOS experiment has an average F, of 7-10 GeV depending on the beamline
configuration and a baseline L, of 735 km. Their observation is Amj, = 3.050:%0
x1073eV? and sin?20,3 = 0.88701% at 1o [32], which agrees within the experimental
uncertainties with the atmospheric neutrino oscillation results. The K2K experiment
has an average F, of ~1.3 GeV and L, of 250 km, and observes an energy spectrum

distortion consistent with 1.9 x107% < Am3 4 < 3.5 x107%eV? at sin’20,5 = 1.0 at

90% confidence level [33].

The results of all of the oscillation experiments are shown in figure 1.1. The
regions of parameter space allowed by the positive signals are indicated by the en-
closed shaded regions, and the experiments which set limits rule out the parameter
space above and within the lines. With three neutrinos, there can only be 2 inde-
pendent values of the oscillation parameter Am?, since Am?, + Am3s = Am] ;.
At present, there are three irreconcileable values of Am? at ~ 107°, ~ 1072 and
~ 1 eV?, as figure 1.1 shows. One solution to this problem is that one of the ex-
perimental signals in incorrect. Both the solar and atmospheric signals have been
confirmed by multiple experiments, however, the LSND signal has not. The purpose
of the MiniBooNE experiment is to confirm or refute the LSND results. If Mini-
BooNE refutes LSND, then the neutrino oscillation picture is fairly well understood,
with (Am?,, sin®260;5) and (Am3, sin*26y3) measured by the solar/reactor and
atmospheric/long-baseline accelerator experiments respectively. The remaining un-
knowns are the value of sin?26; 3, which is limited to be <0.032 [35], the neutrino

mass hierarchy, and whether the phase of the neutrino mixing matrix is non-zero.

On the other hand, if MiniBooNE confirms LSND, the most straightforward
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Figure 1.1: Summary of neutrino oscillation results. Figure from reference [34].
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reference [36].
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solution to the Am? sum rule problem is to introduce a fourth or more neutrino
participants in oscillations, which would allow at least three independent values of
Am?. However, this neutrino would have to be “sterile” since the number of neutrinos
that participate in the weak interaction is strongly constrained to be three by the
precision electro-weak data from LEP [10]. These “sterile” neutrinos do not exist in
the Standard Model of particle physics, and therefore a MiniBooNE confirmation of

the LSND result would have profound implications.

In models with sterile neutrinos, the LSND observation is a product of two or

more transitions. For example, for models with 1 sterile neutrino v,
Prsnp(v, — ve) x P(v, — vs) X P(vs — ve). (1.27)

In this case, the measured sin®20;5yp and Am? ¢y are really effective parameters
describing the experimental observation, and do not correspond directly to two par-
ticipating mass eigenstates. The neutrino oscillation probability in equation 1.14 is
modified by changing n from 3 generations to 4, and the dimension of the mixing

matrix U changes from [3x3] to [4x4]:

Uel UeZ UeB Ue4

go— | U U U Ua) (1.28)
U’?’l U7'2 U’T3 UT4

Us 1 U52 Us3 Us4

Models that add one sterile neutrino are highly constrained by the short-baseline
accelerator experiment null results; the allowed regions for v, appearance and v,
disappearance are shown in figure 1.2. Models with more than one sterile neutrino

are much less constrained [36].
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1.3 The Search for Oscillations at MiniBooNE

MiniBooNE was designed to confirm or refute the LSND oscillation signal, with higher
statistics and different systematics. MiniBooNE is located at the Fermi National
Accelerator Laboratory, on the 8 GeV proton beam line, which produces a v, beam
with an average energy of ~0.8 GeV'. The neutrinos in the MiniBooNE beam come
from the decays of mesons produced in collisions between the 8 GeV primary proton
beam and a neutrino production target. The neutrino detector is located 541 m
downstream from the neutrino source. The detector is an open volume tank of mineral
oil, C'H,, viewed by photo-multiplier tubes, surrounded by an instrumented veto
region. Neutrino interactions are detected primarily via the Cherenkov radiation and
scintillation light creation by final-state particles. An overview of the experimental
apparatus, the neutrino interaction reconstruction, and the detector calibration is

given in chapter 2.

Two kinds of oscillation searches are possible at MiniBooNE: v, appearance, and
v, disappearance. These two analyses each have unique signals and backgrounds, and
therefore have different systematic errors. Depending on the underlying oscillation
physics, they may also be sensitive to different oscillation parameters. For exam-
ple, in models with one sterile neutrino, v, disappearance probes v, — v, while v,

appearance depends on the product of v, — vy and v, — v..

The appearance analysis is the flagship measurement of MiniBooNE because,
assuming CP conservation, v, — v, is the LSND signal channel. The analysis requires
predicting both the v, and v. components of the neutrino beam, then measuring the
V. interactions in the detector and searching for an excess of v, due to v, — 1,
oscillations above background. The oscillated v, spectrum would have the energy

distribution of the un-oscillated v, events, and the number of oscillation v, events
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would be determined by the size of the mixing angle sin?20. In a two neutrino
model where the participating states are v, and v,, the observed number of v, from

oscillations would be

NSSS(EV) = NVH(EV) X P(VM — Ve> (129)
1.297Am?L,
— N, (E,) x sin?20 sm2<E—m)

At MiniBooNE, where < E, > = 0.8 GeV and L, ~ 0.541 km, the first oscillation
maximum occurs at Am? = 1.83 eV2. An oscillation signal near this Am? would
have a characteristic neutrino energy dependence, and therefore good neutrino energy
resolution is important to the experimental oscillation sensitivity. For this reason,
ve charged current quasi-elastic (CCQE) interactions are selected for the analysis,
and good particle identification is important. For Am? values above ~10 eV?, the
oscillation frequency is too rapid for MiniBooNE to resolve the energy spectrum
distortions. In this case, the oscillation sensitivity depends on the observed rate only.
Overall, the appearance sensitivity at MiniBooNE depends approximately equally on

the v, rate and energy distribution measurements.

The background comes from both intrinsic v, in the neutrino beam, and mis-
identified v, interactions. The intrinsic v, content of the MiniBooNE beam is ~0.5%,
which comes from the meson decays K+ — et 7m0, K9 — efr¥ (V_e), and ut — et v,
in the neutrino beam line. The energy distribution of v, from kaon decays peaks at
~1.5 GeV and falls off to the kinematic limit, ~7 GeV. The energy distribution of
V. from muon decays is peaked at ~0.6 GeV, and, this source is the largest intrinsic
beam background to oscillation signal events. The neutrino interaction processes
that fake v, events in the detector mostly come from mis-identified neutral current 7°
production via v,n — v,nm’ and v,p — v,pr°, where the electromagnetic 7 decay,

7 — 7, fakes the signature of a single electron in the detector. Another important
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source of neutrino interaction background is from radiative delta decays, A — N7,
where the final state photon gets mistaken for an electron. The event selection cuts
for the v, appearance analysis must both select v, CCQE events and get rid of mis-
identified backgrounds at a very high level since the size of an LSND-like signal would
comprise < 1% of the total neutrino interactions in MiniBooNE. Consequently the
event selection cuts for the appearance analysis are very harsh: the efficiencies are
~50% for the signal v, CCQE events, and ~1% for the background, in the fiducial

volume.

The most important sources of systematic error for the appearance analysis are
related to the v, background predictions. The errors associated with predicting the
intrisic beam v, rates and energy distributions come primarily from the uncertainties
on the meson production cross sections. Particle production at 8 GeV proton kinetic
energy historically is not well measured, and therefore the 77, KT, and K? production
have 10-30% uncertainties. The 7 uncertainty determines the ™ error because the
pt are produced via 7t — ptv,. However, as shown in chapter 5, the 7" rate can
be constrained to high precision by the observed v, events. The 7° and radiative A
decay background prediction errors come from the neutrino interaction cross section
uncertainties. Before MiniBooNE, there were no measurements of neutral current 7°
production on carbon below F, = 2 GeV', and the radiative A decay had never been
observed in neutrino-induced A production. Uncertainties on these processes derived
from extrapolating measurements from past experiments are at the 50-100% level.
Modelling the detector response is also an important component of the background
uncertainties due to its effect on particle identification. MiniBooNE employs a number
of in-situ calibration analyses to constrain the detector response prediction, which

result in uncertainties of 5-10%.

If LSND-type oscillations occur, the disappearance signal in MiniBooNE can be as



27

large as ~10%, compared with ~1% effect in the appearance channel. This is because
much larger mixing angles are allowed for v, disappearance than v, appearance in
models with sterile neutrinos, as figure 1.2 shows. The disappearance analysis depends
on predicting the number of v, produced in the neutrino beam, and measuring the
number of v, interactions in the MiniBooNE detector. If oscillations are occuring,
then the number of observed v, interactions would be less than the number predicted,
and the energy spectrum may be modified. In a model with only two neutrinos, v,
and vg, the probability for v, disappearance is P(v, — vs), and the observed v,

spectrum in the detector depends on the survival probability as
NP(B,) = Ny (E)) x Py, —v) = Ny (Ey) x {1 — Py, — ys)] (1.30)

= N

Vi

(B,) x |1 — sin*20 sm%%j%)]
As for v, appearance, the first oscillation maximum occurs at Am? = 1.83 eV?2. For
values near to this Am?, oscillations would modify both the number and the energy
distribution of detected muon-flavor neutrinos, and therefore v, CCQE interactions
are selected for the analysis. However, at high Am?, the survival probability reduces
to P(v, — v,) = 1 — sin®20 x 3, and so the oscillation sensitivity in this region

comes entirely from the measured rate, since there would be no information contained

in the detected E, spectrum.

The MiniBooNE neutrino beam is composed almost entirely of v, type neutri-
nos, and v, charged current interactions produce a clear signature: a muon in the
MiniBooNE detector. Therefore, to first order, there are no backgrounds to the v,
disappearance analysis. However, the neutrino energy resolution affects the sensitiv-
ity to oscillations at low Am?, and therefore it is desireable to use only events where
the F, reconstruction resolution is good. For this reason, the disappearance analysis

uses charged-current quasi-elastic (CCQE) v, interactions to search for oscillations.
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Unfortunately, there is some background left after the v, CCQE selection cuts due to
charged current single pion (CClm) production, where the 7 is absorbed inside the
nucleus, or in the detector oil. These events fake the quasi-elastic final state, and
therefore pass the selection cuts, but degrade the E, resolution. A set of selection

criteria for v, CCQE events is developed in chapter 4 of this thesis.

The most important systematic errors for the disappearance analysis are those
related to predicting the v, CCQE spectrum. These include the 7+ production cross
section prediction, which has ~10% uncertainty, the v, CCQE and v, CClm cross
sections, which have 10-20% uncertainties, and the detector response model, which
has ~5% effect on the muon energy scale and therefore on the reconstructed FE,
distribution. The relevant neutrino cross sections have been measured by several
past experiments, but only for F, > 1 GeV. The uncertainty estimate is derived

from extrapolating these higher-energy past measurements.

It is useful to categorize the disappearance systematics as normalization or shape
contributions, since, unlike the appearance analysis, the disappearance sensitivity
comes primarily from the distortion of the shape of the E, spectrum due to oscil-
lations. The prediction for the overall rate of v, CCQE events has a much larger
uncertainty than the prediction for the shape of the E, distribution. In general this
is because it is more difficult experimentally to measure absolute production rates
than a bin-to-bin rate variation, and the v, spectrum prediction uncertainties are

mostly based on past cross section measurements.

In general, since MiniBooNE is an experiment with one detector, it relies on pre-
dicting the absolute flux, neutrino interaction cross sections, and detector response
using data external to the experiment combined with Monte Carlo methods. The
assumptions in the simulation of the experiment contribute most of the sources of

systematic error for MiniBooNE. For the flux prediction, MiniBooNE relies on global
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fits to data from past experiments to predict the 7+, 7=, K, and K? meson pro-
duction cross sections and to determine their uncertainties. A survey of the available
data and the global fitting analysis are described in chapter 3 of this thesis. For
the neutrino interaction cross section predictions, MiniBooNE uses a combination
of previous measurements and theoretical calculations. For the detector response, a
complete optical model for light propagation in the detector oil is employed, with free
parameters measured in external specialty tests and where possible with MiniBooNE
calibration data. These aspects of the simulation of the experiment are summarized

in chapter 3.

Given the dearth of measurements from previous experiments of the important
sources of systematic error for MiniBooNE, it is important to constrain the Monte
Carlo predictions and associated uncertainties with in-situ data wherever possible.
This project is the bulk of the work in this thesis. The overall strategy is to use the
copious v, data in MiniBooNE to check or tune the Monte Carlo predictions and
constrain the uncertainties. Care must be taken to determine the sensitivity of each
analysis to v, disappearance, which, if LSND is correct, may occur at a non-negligble
rate. The other major obstacle is the MiniBooNE blind analysis. In an effort to mini-
mize bias in simulation tuning for the appearance analysis, v, data is sequestered, and
therefore not available for constraining Monte Carlo predictions. Without reference
to v, data, in-situ constraints on the flux predictions can be measured for all contri-
butions to the neutrino flux with the exception of the K? production. Similarly, the
cross section predictions for the most important channels for the oscillation analyses
can all be constrained without v, data, with the exception of the radiative delta decay
branching ratio. Once the v, “box” is opened, the K? and A — N+ rates can be

measured.

The v, from muon decay rate and uncertainty can be extracted with high precision
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* — y,ut followed by pt —

from the v, data set, since the v, are produced via 7
etv.7,, and the 7-decay v, comprise the vast majority of the MiniBooNE neutrino
beam. This analysis uses the v, CCQE selection described in chapter 4, which results
in ~100,000 events after cuts, with 90% v, CCQE purity and 10% E, resolution at
1 GeV. The v, from p decay constraint analysis comprises chapter 5 of this thesis.

This analysis method is also used to extract a constraint on the v, flux uncertainty

for the appearance analysis.

The v, from K+ decay can be constrained using the high energy v, data, since
2-body K decays can produce neutrino energies much higher than those of 7 -decay
v, at MiniBooNE; Kt decay v, dominate over 7*-decay v, for energies above E, =~
2.25 GeV. MiniBooNE also has a beam line monitoring device that measures high
angle muons, which are much more likely to come from kaon decays than pion decays.
Both of these are primarily sensitive to the rate of kaon production, and therefore
external input to constrain the shape of the K spectrum at production is needed
as well. A global fit to combine these two in-situ measurements with the external

production data is described in appendix D.

The neutrino CCQE interaction cross section prediction comes from a theoretical
model for neutrino scattering from a bound nucleon, with a few free parameters
and form factors measured in electron-Carbon scattering data and/or light-target
neutrino scattering data. The parameter uncertainties are derived from the spread
in external measurements of the v, CCQE cross section. The resulting CCQE cross
section uncertainty is ~10%. Constraining the cross section prediction and associated
uncertainties using in-situ data is particularly important because CCQE interactions
are the signal channel for both the v, appearance and the v, disappearance oscillation
searches. The high-statistics MiniBooNE v, CCQE data set is used to measure the

bound-nucleon CCQE cross section parameters and their uncertainties, as well as the



31

functional form of the axial form factor. This analysis is described in chapter 6. The
measured values are rather different from the world light-target averages, but, these
results are in good agreement with a recent Carbon-target measurement at F, = 1.2

GeV from the K2K experiment [37].

A number of other cross section measurements have been made at MiniBooNE to
constrain the predictions of the Monte Carlo. For the v, disappearance analysis, the
ratio of the inclusive cross section for the main background channel, resonant single
7t production, to CCQE has been measured as a function of neutrino energy [38].
For the v, appearance analysis, the v, neutral current 7° cross section has been
measured, as well as the ratio of resonant to coherent production channels [40]. Other
measurements in progress include deep inelastic scattering, v — e~ elastic scattering,

and v, neutral current elastic scattering cross sections.

Constraints derived from the v, data can be incorporated in oscillation analyses
in several ways. First, the MiniBooNE v, data can provide in-situ constraints on
the systematic errors associated with predicting the neutrino flux and interaction
cross sections. In most cases, these systematic errors are smaller than uncertainties
based on external data only. Second, fitting the v, and v, data sets together in a
simultaneous fit for v, appearance and v, disappearance adds a strong constraint on
the predicted systematic errors that are joint to the two analyses. These include the
uncertainties associated with predicting the 7+ and K fluxes and the neutrino CCQE
interaction cross section. The impact of both of these approaches on MiniBooNE’s

V. appearance and v, disappearance oscillation sensitivity is described in chapter 7.



Chapter 2

Overview of the Experiment

MiniBooNE is located at the Fermi National Accelerator Laboratory (FNAL) on the
8 GeV beam line, which transports protons from the Booster accelerator to a neutrino
production target. From August 2001 through December 2005 MiniBooNE amassed
6 x 10%° protons on target in neutrino beam configuration, corresponding to ~500,000
neutrino interaction candidate events contained in the MiniBooNE detector. From
January 2006 through the present, MiniBooNE has collected 3.7 x 10! protons on
target in anti-neutrino beam configuration, corresponding to ~8500 contained anti-
neutrino interaction candidates. The experiment will continue to run in this mode
for some time. The primary goal of MiniBooNE is to confirm or refute the LSND
oscillation result with different systematic errors and higher statistics. To change
the systematics, the MiniBooNE neutrino beam energy and baseline are an order of
magnitude larger than those of LSND. To achieve higher statistics, MiniBooNE has
amassed the world’s largest data set of neutrino interactions in the 1 GeV energy

range [41].
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450 m Detector
dirt

Figure 2.1: Schematic of the MiniBooNFE beam line, not to scale.

2.1 Neutrino Beam

The MiniBooNE neutrino beam is produced from 8.89 GeV//c protons incident on
a beryllium target located inside a magnetic focusing horn. A collimator and 50 m
air-filled decay region follow, which is terminated by an iron and concrete absorber.
The absorber and the neutrino detector are separated by a 450 m dirt berm. The
center of the detector is located 541 m from the target face. A schematic of the beam

line is shown in figure 2.1.

Typical proton beam operating conditions, determined by the FNAL Booster ac-
celerator performance, are 4 x 10'2 protons per pulse, at 3-5 Hz, with a beam uptime
of ~ 88%. The beam spill duration is 1.6 ps. The intensity of the proton pulse is
measured by two toroids in the MiniBooNE proton beam line. This measurement is
used to absolutely normalize neutrino events per proton, and is described in detail
in appendix A. Figure 2.2 shows the accumulation of protons incident on the Mini-
BooNE target as a function of time. The drop in the neutrino interaction rate by a

factor of ~6 after January 2006 is due to MiniBooNE’s change to 7 running mode.

The targeting efficiency, which describes the fraction of the proton beam that
transits the entire length of the target, is determined by the proton beam location
and angle of incidence at the face of the MiniBooNE target. The average position

and angle of the beam at the target face depend on the proton beam line dipole mag-
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Figure 2.2:  Accumulation of protons on target (top), horn pulses (middle), and

neutrino event candidates (bottom) since the start of the MiniBooNE neutrino run.

net currents, which are changed continuously by an automatic tuning program [42].
Therefore, these quantities are measured on a pulse-by-pulse basis using beam po-
sition monitors. The beam widths in the plane perpendicular to the direction of
motion depend on the quadrupole magnet currents, which are only changed during
manual tuning. The widths are measured in a special beam line configuration in
which multi-wire proportional chambers are inserted into the proton beam, which
occurs approximately once every few months. The commissioning of the MiniBooNE

proton beam line is described in detail in reference [43]. Typical beam parameters at

the target face are summarized in table 2.1.

The beryllium target is 71 ¢m long and 1 ¢m in radius. The MiniBooNE proton
beam line was designed such that all of the proton beam transits all of the target. In
practice, a data quality cut is applied such that the measured targeting efficiency is

>95%. The interaction length \; for protons in beryllium is 41.8 ¢m, therefore the

fraction of the beam that interacts is ~0.82, given by (1 — exp[—71/A;]). When
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Table 2.1: Typical proton beam parameters.

quantity z Yy

beam center position | 0.0 mm | 0.0 mm

beam r.m.s. width 1.51 mm | 0.75 mm
beam center angle 0.0 mr 0.0 mr
beam r.m.s. angle 0.66 mr | 0.40 mr

protons interact in the target, the dominant processes are inelastic 7+ and K produc-
tion. From Monte Carlo simulations, the average multiplicity of 7% (K™) produced
per event is ~0.7 (0.05). The small radius of the target is designed to minimize ab-
sorption of these secondary pions. The inelastic interaction length for 2 GeV pions
in beryllium is similar to that of protons, therefore a pion that transits the target

radially has a ~5% probabliity of being absorbed before escaping.

The target is situated inside an aluminum focusing horn, which produces a
toroidal magnetic field in the plane perpendicular to the proton beam direction, which
focuses secondary particles towards the beam axis. The inner conductor inner radius
is 2.54 c¢m in the region surrounding the target, and the inner radius of the outer
conductor is 30 cm. The horn is triggered to pulse with 170,000 A of current for
each proton spill, producing a magnetic field of ~1 T. The magnetic field was mea-
sured before installation, and found to follow the ideal radial field for a line current,
B(r) = pol/2mr where r is the radial distance from the longitudinal axis of the

horn, within the measurement precision of 10% [44].

The power supply for the horn can be set to either positive or negative polarity.
For neutrino running, the polarity is set such that the horn focuses positive sign

mesons, e.g. w, and defocuses the negative sign. For anti-neutrino running the
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polarity is reversed. From systematic runs with the horn off, MiniBooNE determines
that the horn (when on) increases the neutrino flux at the detector by a factor of ~5.
From Monte Carlo simulations of neutrino running, the horn acceptance includes
ranges of meson production momenta and angles from 1 < p, < 4 GeV/c and 0 <

0. < 0.2 radians respectively.

Mesons produced in the target and focused by the horn pass through a collimator
with a 30 em radius aperture, which is located ~2 m downstream of the end of the
horn, and decay in a 50 m long decay pipe with a radius of 90 ¢m. The collimator
is used to localize the radiation produced by secondary particles which are destined
to stop in the decay pipe walls. The limiting aperature for flux acceptance is the
detector cross sectional area, which, when viewed from the target, subtends 0.011
radians. For small angles, tan(d) ~ 6 = (6.10 m)/(541.00 m) = 0.011, where
6.10 m is the MiniBooNE detector radius, and 541.00 m is the distance from the
upstream target face to the detector center. Therefore, only the most forward meson
decays produce neutrinos that hit the MiniBooNE detector. The coordinates of a
neutrino when it arrives at the detector with respect to its origin are

0 0
r = 2%+ (Zaa— ) % (B), g = 4+ (Zaa— ) % (p—g) (2.1)
Pz Dz
r = AT

0 9% 29) are the coordinates of the neutrino at production in e¢m with

where (x
respect to the target face, Z4; = 541.00 m is the distance from the target face
to the detector center, and (p?, pg, pY) are the components of the neutrino’s three

momentum at production. The Monte Carlo detector acceptance cut requires
r < Rdet, (22)

where Rg; = 6.10 m is the radius of the cross sectional area of the detector, viewed

from the target.
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For two-body decays, there is a simple relationship between the energy of the
neutrino and the energy of the parent meson, if one assumes that the meson is on-

axis and that the decay angle with respect to the beam direction i