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Abstract

The evidence is compelling that neutrinos undergo flavor change as they propagate. In
recent years, experiments have observed this phenomenon of neutrino oscillations using
disparate neutrino sources: the sun, fission reactors, accelerators, and secondary cosmic
rays. The standard model of particle physics needs only simple extensions — neutrino
masses and mixing — to accommodate all neutrino oscillation results to date, save one. The
3.80-significant 7, excess reported by the LSND collaboration is consistent with 7, — 7,
oscillations with a mass-squared splitting of Am? ~1 eV2. This signal, which has not been
independently verified, is inconsistent with other oscillation evidence unless more daring
standard model extensions (e.g., sterile neutrinos) are considered.

The (Mini) Booster Neutrino Experiment (MiniBooNE) at the Fermi National Acceler-
ator Laboratory is designed to search for v, — v, oscillations with sufficient sensitivity to
confirm or refute the LSND signal. This dissertation presents the first v, — v, oscillation
search performed at MiniBooNE. After a short introduction, we describe the experimental
setup, which includes a ~1 GeV v, source fed by an 8 GeV proton synchrotron; and an
800 ton mineral oil Cherenkov detector located 0.5 km downstream. We then present a
detailed discussion of the analysis, which uses the full neutrino data set corresponding to
5.58x10?Y protons-on-target and 1.7x10°® neutrino interactions. No evidence for LSND-like
v, — Ve oscillations is seen either in the count of v, candidates [data: 380, expectation:
358 £ 19(stat.) & 35(syst.)] or in the shape of the neutrino energy spectrum.
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Introduction



Chapter 1

Neutrino oscillations and
MiniBooNE

I have done a terrible thing. I have postulated

a particle than cannot be detected.

Wolfgang Pauli

In 1953, twenty-three years after Pauli suggested the existence of a weakly interacting light
neutral particle to explain the continuous nature of the beta decay spectrum [1], neutrinos
emanating from a nuclear reactor were detected [2] [3], and experimental neutrino physics
was born. Today, much of the experimental effort relates in some way to neutrino mass,
and in this chapter we review the phenomenology of massive neutrinos. In particular, we
introduce neutrino oscillations and the motivation for the work described in this thesis.

1.1 Extending the standard model

In the standard electroweak model of Glashow, Weinberg, and Salam [4], neutrinos are
massless spin—% members of left-handed lepton doublets:

(1/@> (V“> (VT> ER MR TR - (1.1)
€ L H L T L

The left- and right-handed fields shown are the chiral projections!

5
YL, R = = :;7 P (1.2)

'We adopt the “Dirac” convention [5] for the Dirac matrices, wherein:

5 .o0123_ (01
v—wvvv—(l 0 )



of the four-component Dirac spinors 1 which are solutions to the Dirac equation [6]. Since
chirality is conserved for massless particles, right-handed neutrinos (and left-handed an-
tineutrinos) do not participate in the weak interaction due to the V—A nature of the weak
current (J* ~ y#(1 — +%)). Since they cannot interact via the strong or electromagnetic
forces either, the (v;)g fields are absent from the standard model.

1.1.1 Neutrino masses

Detailed treatments of neutrino masses may be found in Refs. [6], [7], and [8]. This discussion
follows [6].

The Dirac Lagrangian?

£ =1 (i — m) (1.3)
includes a kinetic energy term and a mass term £ = —mapp which we can write in terms
of the chiral states as

—Ly = m(prr +PrL) - (1.4)

(Note that 9r4r = ¥rir = 0.) If we assume in the neutrino case (¢ = v) that a right-
handed field vz (and ¥r = ¢}L{70) exists, this mass term can be present in the theory
if m = m, # 0. However, the O(eV) upper limits on neutrino mass [9] imply that the
Yukawa coupling A, which leads to m upon electroweak symmetry breaking [10] must be
anomalously and inexplicably small, ), < O(10~!!), compared to the Yukawa couplings for
the other fermions (~107° to ~1.)

Since the neutrino is neutral, the above mass term is not the most general. We can
combine v with its charge conjugate field 9°¢ to form additional Lorentz invariant bilinears
which, for charged particles, would violate charge conservation. The most general possible
Lagrangian for neutrinos includes these “Majorana” mass terms:

— n 7.C mL Mmp WI:-Z
_25_(¢L ¢L)(mp mR) <¢R> + he. (1.5)

Setting my, = mp = 0 recovers the “Dirac” case of Eq. (1.4), with m = mp.

Diagonalizing Eq. (1.5) yields mass eigenvalues

1

mip =3 [(mL +mg) % \/(my —mp)? + 4m§7] . (1.6)

(Positive masses can always be obtained through a redefinition of the fields.) If mp is
similar to other fermion masses (mp ~ m.) and mg > mp, my, the eigenvalues become

mp
m ~ —=
mg

mo R MR

*We use natural units A = ¢ = 1 throughout this chapter.



where one eigenstate (call it ©) has mass m; < (mp ~ m.) and another (N) has mass
mo > me. Many standard model extensions place mp at the GUT scale? (motivating
the condition mpg > mp, mr) and offer a candidate heavy neutrino field N, either sterile
or coupled through a right-handed current mediated by a GUT-scale boson [11] [12]. This
formalism, known as the “see-saw” mechanism in the literature, provides us a light neutrino
while avoiding the fine tuning needed with a pure Dirac mass term.

1.1.2 Neutrino mixing

For N, neutrino generations, there will be N, mass eigenstates v;. Nothing requires that
these eigenstates correspond to the flavor (or weak) eigenstates v, which appear in the
weak current. In general, the mass (v;) and flavor (v,) eigenstates will be connected by an
N, x N,, unitary matrix U:

N,
va) = D Usilvi) - (1.7)
i=1

U (often called the Maki-Nakagawa-Sakata (MNS) matrix [13]) is analogous to the perhaps

more familiar CKM matrix governing quark mixing.

As we shall see, the evidence is overwhelming that neutrinos have mass and that the
weak eigenstates are admixtures of the mass eigenstates. We review some of the possible
experimental signatures of neutrino mass and mixing before discussing the phenomenon

relevant to the present work: neutrino oscillations.

1.2 Implications

p-decay spectrum

Nuclear -decay
X = 4.Xp e 47 (1.8)

produces electrons with maximum energy
E™ = FEy—m, , (1.9)

where Fq = M; — My is the mass difference between the initial and final nuclei and where

2 _m2
we have neglected the nuclear recoil energy which can be no larger than E% Mr,ne (or about
0.003 eV for tritium S-decay). With massless neutrinos, the energy spectrum K (FE,) of the
outgoing electron approaches the endpoint E'** = Ej linearly. For m, # 0, the endpoint

shifts by m, and the linearity of K(F,) fails near (E"** — E,) ~ m,, with the spectrum

310" GeV or so. To get my ~ 0.05 eV (the neutrino mass lower limit implied by atmospheric neutrino
oscillations, §1.3.4) using mr = 10'* GeV, one needs mp ~70 GeV which, while stretching the relation
mp ~me, is a perfectly reasonable electroweak value.



taking the form [14]

N

K(Be) ~ |(Bo — Bo)/(Bo — B2 —m3]” . (1.10)

By measuring the energies of near-endpoint electrons, one can look for this m,-induced
modification to K(E,.). If found, the observed spectrum would provide a measure of m,.
Tritium is a good choice for these so-called “kinematic” (also, “direct”) mass searches, as
(a) its relatively low Ej (18.6 keV) keeps the fraction of near-endpoint decays high?, (b) its
half-life is short enough that useful rates can be obtained without too much line-broadening
within the source, and (c) final state electron and nuclear energy levels (which confuse the
shape of Eq. (1.10) ) can be calculated.

[B-decay experiments have thus far not observed a neutrino mass signal, and the Particle
Data Group global limit is m, < 2 eV [9]. Although a 7, is emitted in the decay, we
cannot treat this as a limit on mp, or (invoking CPT invariance) m,,. These quantities
are not well-defined in light of neutrino mixing, and the mass actually measured in these
experiments is given by [6]

m? = 3 Uuilm? (1.11)
2

assuming the experimental resolution dg is much larger than any mass difference (g >
|mi — m;|). In the case that |U|? < 1 for all i except one, m, can be approximately
identified as the “electron neutrino mass”.

Neutrinoless double-3 decay

Many nuclei can undergo the second-order “double S-decay” (8/) transition
IXi = 4. Xjte +e 40 +7 (1.12)
Z 4™ Z424nf e e .

(or similar 8% and electron capture transitions). In practice, this reaction is relevant only
for the few nuclei ("®Ge, '35Xe, others) that can undergo BS-decay even though they are
stable to B-decay. For these even-even nuclei, the nominal f*-decay daughter has a higher
mass due the nucleon pairing force [16]. Thus, S-decay is kinematically forbidden and
cannot overpower the otherwise rarer §3-decay.

If neutrinos are massive Majorana particles, they can mediate a related neutrinoless
double beta decay reaction (OvSg)

X = 5..Xp+e +e . (1.13)
Majorana neutrinos (v = ) are required since the v propagator leaving one weak vertex
is absorbed as a v at the other. Massive neutrinos are needed so that the chirality may
be different at the two vertices as required by the V-A current (although models involving
right-handed currents often require nonvanishing neutrino mass for Ov8 anyway [17]).

4although only ~107'2 of decays put E. within 1 eV of the endpoint [15]



The search for OvBf is active, with upcoming experiments reaching for m=0.1 eV
sensitivity [18]. A controversial positive signal was reported by Klapdor-Kleingrothaus et
al. [19]; it has not yet been independently verified. If a signal is confirmed, the measured
Ov3 rate can be related to an effective Majorana mass mgg, with

2

mgs = (1.14)

2
E Usm;
i

In contrast to m, in Eq. (1.11), complex CP phases in the MNS matrix can lead to cancel-

lations in this sum, reducing m% 3 and the OvfBp rate. Additionally, large uncertainties in
necessary nuclear matrix elements limit the precision to which mgg can be determined.

Cosmology

In the hot big bang model, light neutrinos in the early universe were in thermal equilibrium
until around k7 = 1 MeV. Since then, neutrinos have been frozen out and should be present
today with a number density related to that observed for the cosmic microwave background

photons [12]
3

1
The contribution 2, of these neutrinos to the cosmological density parameter 2 is

1
Q, = —n,,Zmi
L

N,

1 14
_ S m, 1.1
(93.5 eV)h2 & (1.16)

ny n, =113 cm ™ ® (per generation). (1.15)

where p. = 1.88 x 10 22 g/cm3 is the critical density and h is Hubble’s constant par-
ametrized as Hy = (100 h) Mpc~'kms~!. The observation that Q=1 [20] (and, therefore,
2, <1) implies an upper limit on the sum of light neutrino masses (taking h = 0.5)

N,
Y mi <20 eV (1.17)
=1

Much heavier neutrinos, m >1 MeV, become non-relativistic before decoupling, and their
number density is given not by Eq. (1.15) but rather by the Boltzmann factor, which
includes a mass-dependent suppression n,, ~e~™/T [12]. For m 22 GeV, the resulting
density parameter 2, again becomes compatible with observations. Intermediate mass
neutrinos (20 eV < m < 2 GeV) are allowed only if they are unstable with lifetimes shorter
than the age of the universe [8].

In addition to contributing to the matter density in the universe, neutrinos can influence
the formation of large scale structure (e.g., superclusters). Neutrinos streaming out of
regions of relatively high density into regions of lower density tend to erase small scale



density perturbations. This collisionless damping has observable effects on the matter
distribution [6]. The mass limits inferred from the measured matter power spectrum are

(assuming three neutrino generations) [21]

3
D mi <0.7-22eV. (1.18)
i=1

Onward

Despite the variety of experimental possibilities (including many not mentioned here®),
only upper limits on neutrino masses have been set thus far except via the interferometric

phenomenon of neutrino oscillations.

1.3 Neutrino oscillations

A neutrino created through a charged current weak interaction is, by definition, in a flavor
eigenstate. The particular flavor eigenstate |v,) (@ = e, u, 7) can be determined experimen-
tally by observing the charged lepton o involved. (An et gets produced alongside a v,
and so forth.) Neutrino mixing implies that |v,) is not (in general) a mass eigenstate and,
therefore, is not necessarily a stationary state of the free-space Hamiltonian. Consequently,

a neutrino of definite flavor need not keep that flavor as it propagates.

1.3.1 General formalism

A mass eigenstate |v;) with mass m; and momentum p evolves in time according to
vi(t)) = e~ Pt |us) (1.19)

where E; = {/p? + m?

2.
a superposition of these, and its time evolution is obtained by combining Eq. (1.19) and
Eq. (1.7):

A flavor eigenstate |v) = |v,) produced with momentum p is

() = Y Usie”"'w)
i
= Y U Usie Eitug) (1.20)
i B
where in the second line we have used the unitarity of U to invert Eq. (1.7):

lvi) = Usilvg) - (1.21)
B

®neutrino magnetic moments [22], neutrino decay [23], supernovae observations [24]



We can immediately write down the probability P(v, — vg)(t) that the neutrino |v), if
detected at time ¢, will have its flavor measured to be 3:

Pva—vp)(t) = |{vslv(t)?

> UpUgie it
1

(1.22)

A highly relativistic neutrino covers a distance L = ¢ in time ¢ (recalling our unit convention
2
c=1) and has E;=p + ZL—;. Thus,

2
2
Plva—vg) = |3 UglUse Phe™"n"
i
ZiL (2 _m?2
= Z UaiUa;UsiUsje 2 (mi=m;) (1.23)
©g
Regrouping terms in the sum and using the unitarity of U yields [9]
P(l/a — 1/5) = 5,15
— 4 " R(U3U,;UsiUs,) sin’ [k Ami; (L] E)]
+2) S(UxU,,UpiUs;) sin[26Ami;(L/E)]
1>]

where k = 1.27 GeV/km/eV?, Am?j =m? — m?, L is the source-to-detector distance (the

“baseline”), and E is the energy of the neutrino.® Some comments:

e The sinusoidal nature of P(v, — vg)(L) motivates the appellation “neutrino oscilla-

tions”.

e Experiments typically search for oscillations by looking for a deficit of a particular
flavor (“disappearance” experiments) or an excess of a particular flavor, often one
that is nearly absent in the neutrino flux to begin with (“appearance” experiments).

e If CPT holds, the conjugate oscillation process has a probability P(7g — 7,) given by
Eq. (1.24) with the modification U — U*.

e If U is real, neutrinos and antineutrinos have identical oscillation probabilities. Ad-

ditionally, the last term in Eq. (1.24) vanishes, and the signs of the Amgj splittings

become irrelevant for vacuum (i.e. non-MSW, §1.3.3) oscillations.”

5The energy is well-defined only because of the relativistic approximation made in deriving Eq. (1.24).
For a more detailed treatment which addresses this and other nuances, see Ref. [25].

"One often sees Am?j in the literature where |Am?j| in intended. For better or for worse, we, too, use
this shorthand when no ambiguity results.



2
ij
the individual neutrino masses cannot be determined with oscillations.

e Neutrino oscillations depend only on mass-squared differences Am?.. The values of

e The experimental parameter L/E controls which mass-squared splittings can be ob-
served. Terms in Eq. (1.24) with HAm?j(L/ E)<1 will be experimentally negligible.
E or L/FE spectral distortion may be observable if fiAm?j(L/ E)~1. Oscillations may
also be visible when ,%Am?j (L/E)>1, but resolving Am?j will not be possible.

1.3.2 Quasi-two-neutrino oscillations

If either:

1. the produced flavor eigenstate |v,) couples significantly to only two mass eigenstates

|Vm) and |vy,), or

2. one family of splittings AM? is much larger than all the other splittings and the
experiment is sensitive to AM? (i.e., kAM?(L/E) 2 1)

then Eq. (1.24) can be greatly simplified to
P(vy — vg) = sin®20sin’*[kAm*(L/E)] . (1.25)

The splitting Am? represents either Am2, (Case 1) or AM? (Case 2), and the mixing
parameter 6 can be written in terms of the elements of U [9]. Eq. (1.25) has exactly the
form one obtains by considering two neutrino mass eigenstates separated in squared mass
by Am? and related to two flavor eigenstates via the mixing matrix

U:( cos 0 sm0> . (1.26)

—sinf@ cos@

Many oscillation analyses (including this one) use this “quasi-two-neutrino” oscillation ex-
pression. Results are often presented by specifying allowed/excluded regions in the two-
dimensional space (sin?20, Am?).

1.3.3 Matter effects

Neutrinos traveling through matter undergo forward scattering which can be treated with an
additional potential term in the Hamiltonian. Since electron neutrinos experience charged
current scattering off the electrons in bulk matter while muon and tau neutrinos do not,
the v, potential has an extra contribution

V =V2GFpN, (1.27)

where G is Fermi’s constant and N, is the electron density of the propagation medium [6].
In the context of neutrino oscillations, this extra potential can be cast as an effective v,



mass which, upon diagonalization of the mass matrix, results in modified mass eigenvalues.

For v, 3 v, oscillations in matter, the splitting Am? of Eq. (1.25) gets replaced by
Am?2 = Am? fysw (1.28)

and the mixing parameter sin?26 becomes

in?26
sin220,, = S;;SW , (1.29)
where the energy-dependent scale factor fysw is given by
2VE 2,
fmsw = Az 08 20 ) +sin“20 . (1.30)
For an electron density of
Am? cos 20
L= fom_cos sy (1.31)
2\/§G rE

flavor oscillations become maximal (sin?26, =1) even for small vacuum mixing angles
(sin?26 < 1), and the oscillation wavelength is scaled up from its vacuum value by 1/ sin 26.

This phenomenon, often termed the Mikheyev-Smirnov-Wolfenstein (MSW) effect [26],
is negligible for MiniBooNE (the experiment described in this thesis). Typical MSW-related
quantities in MiniBooNE are E=0.8 GeV, Am?=1 eV?, sin?260=0.004, and N,=10?* cm~3,
yielding a scale factor of (1 — fusw) = 3x1075. Within the entire LSND allowed region
(§1.3.5), the effect is never larger than (1 — fuysw) = O(107*). We do not mention the
MSW effect outside of this chapter.

1.3.4 Experimental evidence
Solar and reactor neutrinos
The fusion reactions that power the sun, such as
p+p— H+em +u., (1.32)

produce electron neutrinos. In 1964, John Bahcall put forth a prediction for the flux of these
solar neutrinos reaching Earth [27] and Raymond Davis described [28] and performed [29]
an experiment to measure them. The experiment used 390 000 liters of perchloroethylene

whose chlorine served as a target for the inverse S-decay process®

STC1+ v — 3Ar + e . (1.33)

8This reaction has a threshold of 814 keV and cannot detect the pp neutrinos of Eq. (1.32). It is sensitive
primarily to ®B neutrinos [6].

10



The produced 37Ar was periodically collected and counted. The solar v, flux inferred from
the 37Ar production rate was found to be significantly lower than that predicted. After
another quarter-century of data collection and solar model refinements, the discrepancy

remained:

observed: 2.56 4 0.16 SNUY (Homestake chlorine experiment (1996) [30])
predicted: 7.6712 SNU (Bahcall et al. (2001) [31]) .

This so-called “solar neutrino problem”, wherein the observed rate of solar neutrinos falls
short of expectation, was confirmed in similar gallium-based experiments (GALLEX/GNO
and SAGE) which were sensitive to lower energy neutrinos, including those from the pp
reaction above [32] [33] [34].

Cherenkov detectors also recorded solar v, deficits. Kamiokande [35] and later Super-
Kamiokande (Super-K) [36], using 2 kiloton (Kamiokande) and 22 kiloton (Super-K) fiducial
volumes of water surrounded by grids of photomultiplier tubes, observed fewer solar neutrino
elastic scattering events

v+e —v+e (1.34)

than expected. (This reaction occurs for v, as well as v, and v,, although the cross section
differs for v, since a charged current channel is available.) The more recent Sudbury Neu-
trino Observatory (SNO) performed a similar measurement using heavy water [37], which
offers two additional detection channels: (1) charged current dissociation of deuterium

Ve+d—e +p+p (1.35)
which sees only the v, flux, and (2) neutral current dissociation
v+d—ov+p+n (1.36)

which is flavor-agnostic. SNO could thus measure the v, flux alongside the total neutrino
flux. As shown in Figure 1.1, the inferred total flux is in good agreement with the standard
solar model. However, only one-third of the flux is detected as v,, with the rest appearing
as v, or v,, flavors which are not produced in the sun. SNO’s landmark result solidified the
oscillation explanation for the solar neutrino problem.

Commercial fission reactors produce electron antineutrinos with energies comparable
to those of solar neutrinos. Reactor-based experiments at baselines ranging from 10 m to
1 km saw no deficits in v, event rates. In 2003, the much longer baseline (L ~ 200 km)
KamLAND experiment reported a 7, flux that was lower than expectation by the factor
0.611 £ 0.085(stat.) £ 0.041(syst.) [39]. The KamLAND signal (Figure 1.2), along with the
previous null reactor results and the amassed solar neutrino observations, forms a consistent
picture in which electron (anti)neutrinos undergo quasi-two-neutrino oscillations with a
mass-squared splitting of Am?D = 7.91’8:2 x 107° €V? and a mixing angle of tan?fy =

94solar neutrino unit” = 10736 argon atoms produced per chlorine atom per second

11
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Figure 1.1: Solar neutrino flux: measurements (SNO and Super-K) and prediction. The
three reactions (elastic scattering (ES, gray and green), charged current dissociation (CC,
red), neutral current dissociation (NC, blue) ) have different sensitivities to the v, flux and
the v, /v, flux. SNO’s inferred fluxes ¢, and ¢,, are shown here along with the ES-based
measurement from Super-K. The standard solar model 68% C.L. prediction is bounded by
the dashed lines. From Ref. [38].

0.4070:5% [40]. The vastly different solar and reactor neutrino baselines are reconciled by
important MSW effects within the sun.

Atmospheric and accelerator neutrinos

Primary cosmic rays (mostly protons, with some heavier nuclei) interact in the upper atmo-

sphere producing secondary hadrons (7% and K*) whose decay chains include neutrinos.
For example,

at —ut 1.37

KoYy (1.37)

followed by

pt = e, (1.38)

results in two muon (anti)neutrinos and one electron neutrino. The initial indications that
these neutrinos oscillate came from the Kamiokande [41] [42] and IMB [43] groups, which
observed anomalously low v, rates relative both to absolute predictions and to the observed
v rates. (The flavor ratio v, /v, can be predicted more precisely than the absolute rates

12
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Figure 1.2: Evidence for v, disappearance from KamLAND [40]. The energy-dependent
deficit in the spectrum is clear (data and best-fit compared with “no-oscillation” curve).

since the ratio is governed primarily by the decay modes of the secondaries.) Super-K
subsequently presented evidence strongly favoring the hypothesis that atmospheric muon
neutrinos oscillate into tau neutrinos [44] [45]. The L/E-dependent v, flux suppression seen
in Super-K is shown in Figure 1.3.

A particle accelerator can be used to create a neutrino source not unlike the natural
atmospheric one. By sending a beam of protons through a fixed target, one can generate
mesons whose decay chains produce neutrinos, as in Egs. (1.37) and (1.38). The MINOS
experiment used such a beam to perform a search for v, disappearance in the Am? region
preferred by the atmospheric data. Figure 1.4 shows the measured MINOS v, spectrum
which includes a clear deficit relative to a no-oscillation prediction. The K2K collaboration,
using a similar beam aimed at the Super-K detector, also reported evidence of v, disap-
pearance. The MINOS and K2K observations are consistent with the Super-K atmospheric
v, — vr oscillation parameters. Figure 1.5 shows this agreement. Taken together, these re-
sults imply (at ~90% C.L.): 1.9x1073 eV2 < Am2,, < 3.0x 1073 eV? and sin?20,4,, > 0.9.
No evidence for v, appearance or disappearance has been seen at Am2,,, with the CHOOZ
experiment setting the best limit: sin?26 < 0.1 (90% C.L.) [47].

We show in Figure 1.6 a graph from H. Murayama [49] which displays the allowed
and excluded parameters from (almost) all oscillation experiments to date. (Notably, the
MINOS and K2K results have not yet been incorporated.) The LSND signal in the graph

is our next topic.
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Figure 1.3: Super-Kamiokande L/E spectrum from atmospheric neutrinos. The data (solid
points) and best-fit v, — v, oscillations (solid) are shown as ratios to the no-oscillation
Monte Carlo prediction. The best-fit expectations for neutrino decay (dashed) and neutrino
decoherence (dotted) are also shown. From Ref. [46].

1.3.5 LSND

The Liquid Scintillator Neutrino Detector (LSND) at Los Alamos National Laboratory
looked for the reaction
vet+p—et+n (1.39)

using ~200 tons of mineral oil doped with b-PBD scintillator and viewed by 1,220 photo-
multiplier tubes. This reaction was identified by the prompt light from the positron and
the delayed 2.2 MeV +y released in the neutron capture n +p — d + y. The detector was
situated 30 m from a stopped-u™ v, source. Appearance of 7, events in excess of the small
expected backgrounds would suggest v, — U, flavor change.

Indeed, a 3.80-significant excess of 87.9 £ 22.4 &+ 6.0 events was found [50]. Figure 1.7
shows the observed L/FE spectrum. The excess is consistent with 7, — 7, oscillations with
Am?>0.03 eV2. Figure 1.8 shows the LSND allowed oscillation parameters along with
two exclusion curves discussed below. The best-fit oscillation scenario gives a spectrum-
averaged oscillation probability of (0.264 4 0.067 +0.045)%. Earlier analyses using a subset
of the final data sample were consistent with this one [51] [52].

14
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Figure 1.4: Observation of v, disappearance in MINOS (data and best-fit compared with
unoscillated spectrum) [48].

In 1998, LSND presented a v, — v, oscillation analysis using the v, flux from 7 decay-
in-flight. The energies (60 MeV < E,, < 200 MeV), background sources, and event signatures
all differed from the 7, — v, case above. Thus, while less sensitive than the y* decay-at-rest
results, this analysis served as a useful cross check for the oscillation interpretation of the
U, excess. A total of 40 beam-on events were observed, in excess of the expected 21.9 2.1
events. The inferred oscillation probability of (0.26 + 0.1 4+ 0.05)% is consistent with the
decay-at-rest value.

Bugey

A few year prior, an experiment near the Bugey nuclear reactor in France collected large
samples of 7, events in three detectors at baselines of 15 m, 40 m, and 95 m [54]. Each
detector comprised ~100 optically independent modules containing liquid scintillator doped
with ®Li. As in LSND, the signature reaction was Z.-induced inverse 3-decay, Eq. (1.39).
Photomultiplier tubes viewing the scintillator recorded the prompt light from the positrons
and the delayed light from the neutron captures on 6Li. The three-detector configuration
reduced flux uncertainties in the oscillation search to 2%.

The experiment saw no evidence for 7, disappearance. Since reactor antineutrinos have
E, ~3 MeV, the Bugey baselines of L ~ 40 m imply sensitivity to 7, oscillations at Am? ~
(E/L)/k ~ 0.06 eV% which is within the LSND allowed region. As shown in Figure 1.8,
the null Bugey result excludes LSND allowed parameters with sin?26 > 0.04.
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Figure 1.5: Preferred oscillation parameters from MINOS, K2K, and Super-K [48].

KARMEN

The Karlsruhe Rutherford Medium Energy Neutrino (KARMEN) experiment searched for
oscillations using a stopped-u™ source of 7, similar to that employed by LSND [53]. The
KARMEN detector was a 56-ton segmented liquid scintillator calorimeter located 18 m from
the neutrino source. The v, detection principle was similar — prompt positron light followed
by neutron capture — and the capture efficiency was enhanced by the placement of Gd-
doped linings between the detector modules. KARMEN also used beam timing to reduce
backgrounds from nt-produced neutrinos. (7,+=26 ns, 7,=2.2 ps.) The experiment
recorded 15 candidate 7, events, consistent with the 15.8 &+ 0.5 events expected from non-
oscillation sources. Figure 1.8 shows the resulting exclusion curve.

Implications of the LSND signal

While the Bugey and KARMEN results limit the range of allowed parameters, the LSND
excess is still consistent with 0.1 eV? < AmiSND <10 eV? and 0.001 < sin?20r.snp < 0.04.
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With three neutrino generations, the spectrum of mass-squared splittings must satisfy
Am?, + Am3s + Am3, =0 . (1.40)

The gap between Am2 ~ 8 x 10 7% eV? and Am2,,, ~ 3 x 103 eV? implies that the third
splitting must be approximately degenerate with the atmospheric value,

AmZ g~ AmE  ~3x 103 eV?, (1.41)

atm

yet AmZqyp > Am?Z,. That is, within a three neutrino framework, the LSND result
is inconsistent with the numerous experiments of §1.3.4 which have measured Am%a and
Am2, .. This inconsistency can also be demonstrated with a three-neutrino global analysis,
as in Ref. [55].

A possible reconciliation is to introduce a fourth neutrino separated in mass-squared
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from the others by ~Am?qyp. From measurements of the invisible partial width of Z°
decays at LEP, we know that the number of light neutrinos that couple to the Z9 is
2.9841 4+ 0.0083, consistent with N, = 3 [56]. This fourth neutrino, then, must not take
part in the weak interaction and is thus termed a sterile neutrino. Models that introduce
one sterile neutrino v; leave some tension in the short-baseline data, but it has been shown
that a second sterile neutrino can remedy this [57]. SNO and Super-K, by measuring the ac-
tive neutrino flux with neutral current reactions and by looking for sterile-like MSW effects,
provide limits on the amount of mixing that v; can have with the active sector [45] [58],
but many models (especially those with multiple sterile states) are still allowed.

An alternate scenario is that the mass spectrum for neutrinos differs from that for
antineutrinos. This requires a violation of CPT in the lepton sector; Refs. [59] and [60] put
forth such models.

1.4 MiniBooNE

The LSND results still lack independent confirmation or refutation, and this is the raison
d’étre of the Booster Neutrino Experiment (MiniBooNE) at the Fermi National Accelerator
Laboratory (FNAL) in Batavia, Illinois.!?

MiniBooNE is a v, — v, appearance search that utilizes the FNAL Booster neutrino
beam, a broadband source of ~1 GeV muon neutrinos or (if so configured) antineutrinos.!!
A 0.8 kton mineral oil Cherenkov detector sits 0.5 km downstream of the neutrino source.
An excess of v, candidate events in the detector would be an indication of v, — v, flavor
change. While MiniBooNE operates at neutrino energies 10 — 20x higher than those in
LSND, the neutrino baseline is larger by a corresponding amount (16x), giving MiniBooNE
and LSND sensitivity to comparable Am? ranges.

The higher energies also imply a different set of event signatures. Charged current v,
interactions are not kinematically forbidden, and these account for the majority of events.
Charged current v, events are sifted out by recognizing the Cherenkov patterns characteris-
tic of e-induced electromagnetic showers. The neutrino beam has ~0.6% v, contamination
which forms an irreducible background in the v, search. Additionally, neutral pions created
in v, interactions may decay to an electromagnetic final state (7°—+~y) which can mimic a

v, event.

This thesis presents the first v, — v, oscillation search performed at MiniBooNE, using
1.7 million neutrino interactions collected from February 4, 2003, to October 30, 2005. An
LSND-like v, — v, oscillation signal would appear as an excess of O(100) v, events after

selection, alongside a comparable number of intrinsic v, and misidentified v, interactions.

10«MiniBooNE” refers to the single-detector experiment currently running. A confirmation of the LSND
signal would motivate the construction of a second, longer baseline detector and the birth of “BooNE”.
" This beamline was constructed for MiniBooNE but it is proving to be more generally useful.
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1.5 Layout of this document

The remainder of Part I outlines MiniBooNE’s experimental setup. Part II discusses the
vy, — v, oscillation analysis, beginning with an overview (Chapter 5) and continuing with
three chapters describing the Monte Carlo simulation chain. Chapter 9 discusses the event
reconstruction algorithm, which provides event kinematics and particle identification in-
formation. Chapters 10 and 11 describe the selection and use of two tuning samples (v,
charged current quasi-elastic events and neutral current 70 events). Chapter 12 presents
the v, selection and signal extraction procedure. Chapter 13 discusses how we verify the
readiness of the analysis, and Chapter 14 concludes the main text with the results of the
oscillation search. Appendices follow.
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Chapter 2

Booster neutrino beam

The neutrino source in MiniBooNE begins with 8 GeV kinetic energy protons from the
FNAL Booster proton synchrotron. Protons are directed onto a 71.1 c¢m long, 0.48 cm
radius beryllium target that sits inside a magnetic focusing horn. Positive hadrons produced
in the p-Be collisions are focused by the horn into a region where their decays produce the
desired neutrinos. The decay region terminates with a steel and concrete absorber. The
neutrinos continue through the absorber and ~500 m of undisturbed earth before reaching
the MiniBooNE detector. Figure 2.1 shows the location of the target hall and detector on
the FNAL site, and Figure 2.2 gives the layout of the experiment, from target to detector.

2.1 Proton source

Protons from the Booster arrive at the beryllium target in 1.6 us spills (a.k.a. batches,
pulses) with ~4x10'? protons in each spill.l:> The Booster cycle frequency (and, thus, the
instantaneous spill rate) is 15 Hz, although spills to MiniBooNE are limited to a time-
averaged rate of 5 Hz due to target heating and horn structural limits.

To prevent unacceptable levels of radioactivation within the Booster tunnel, local and
total beam losses are monitored and controlled. These Booster losses were the typical proton
rate limitation during the neutrino run, although a series of Booster improvements kept the
average rate on a steady upward climb (Figure 2.3). The analysis in this thesis uses the
complete neutrino data set, which corresponds to 5.58x10?° protons-on-target (POT).?

2.2 Target and horn

The 71.1 cm target, comprising seven cylindrical beryllium slugs, provides 1.9 inelastic
interaction lengths of material for the incoming protons. The slugs sit along the central axis

!The spills have 53 MHz fine structure which is ignored by the oscillation analysis but can be seen in the
neutrino data.

?Beamline toroids provide the protons-per-pulse measurements with <5% uncertainty, negligible in this
analysis.

3¢f. the MiniBooNE goal: 1x10%" POT [62]
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Figure 2.3: Protons to the MiniBooNE target. The black histogram shows the week-
averaged proton rate. The drop near week 115 corresponds to the turn-on of the NuMI
neutrino beam. The two large gaps are from accelerator shutdowns. The red curve shows
the integrated proton delivery. Events that do not pass beam- or detector-related data
integrity checks (2.5%, Appendix A) are not included.

of the horn and are cooled by a closed circulating air system which removes the ~600 W of
beam-induced heating. Upstream, multiwires and beam profile monitors report the location
and direction of the proton beam as it approaches the target. Beam spills with targeting
information that is out of tolerance (Appendix A) are excluded from the analysis.

The magnetic focusing horn provides a toroidal magnetic field (peak: 1.5 T) that steers
positive secondary hadrons toward the decay region.* The horn is driven by a 143-us, 174-
kA current pulse which peaks in time with the arrival of protons at the target. Current
enters the horn along the cylindrical outer conductor (radius 30 cm, length 185 cm). The
conductor folds inward at the downstream end to become the inner conductor, whose radius
varies from 2.2 cm to 6.5 cm. The bulk of the horn, including the conductors and support
hardware, is made of aluminum (alloy 6061 T6).

A closed water system cools the horn. Nozzles attached around the outer conductor
spray water onto the inner conductor. Because the current pulses induce large vibrations
in the horn, the nozzles are coupled to the outer conductor with bellows to provide me-
chanical isolation. A truss system surrounding the horn supports the water cooling system.

4MiniBooNE is now running with the horn polarity reversed, focusing negative secondaries to produce a
primarily 7, beam.
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Figure 2.4 shows a drawing of the horn and parts of the cooling system.

The target and horn sit within an iron shielding pile that controls the radiation level
in the target hall. 2 m of shielding separates the target region from the room above.
Additionally, a collimator just downstream of the horn absorbs secondary particles destined
to miss the decay pipe. The collimator aperture grows from a radius of 30 cm (upstream)
to 35.5 cm (downstream) and has a length of 214 cm, beginning 259 cm from the upstream
end of the target.

Figure 2.4: Side view of the horn. The outer conductor has been rendered partially trans-
parent to reveal the inner conductor and parts of the water cooling system. From Ref. [61].

2.3 Decay region and flux

Secondary mesons that pass the collimator enter a ~45 m long, 90 cm radius decay pipe.
The vast majority of secondaries are 7+ which decay to u*v, to provide most of the neutrino
flux reaching the detector. The decays of p*, K+, and K? produce a small v, flux that
amounts to a significant background in the oscillation search. Details of the flux composition
are saved for Chapter 6. For now, we show in Figure 2.5 the predicted energy spectra of the
neutrinos reaching the MiniBooNE detector. The relative integrated fluxes of v, : 7, : v, : e
are 1:6x1072 : 6x1073 : 6x107%.

The decay pipe terminates with a steel and concrete absorber located 50 m from the
upstream end of the target. A second absorber can be inserted at 25 m, but this option

was not exercised for the neutrino run. A muon spectrometer situated 7° off-axis views a
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Flux of neutrinos at the MiniBooNE detector

Y

®(E) (V/POT/GeVicm?)

E, (GeV)

Figure 2.5: Neutrino fluxes at the MiniBooNE detector.

small portion of the decay region and can, in principle, provide a measure of K+ production
via the muons it sees. However, the analysis of this data was not complete in time for the
oscillation search.

The neutrinos produced within the decay pipe continue through the absorber and head
toward the MiniBooNE detector, the center of which lies 541 m downstream of the target

and 2 m above the beam axis. We describe it next.
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Chapter 3

MiniBooNE detector

3.1 Overview

The MiniBooNE detector consists of a 12.2 m diameter spherical carbon steel tank filled with
800 tons of mineral oil. Supported within the tank is an opaque spherical shell of diameter
11.5 m (the “optical barrier”) that divides the oil volume into a thin outer veto region and
a large inner main region. The veto region is instrumented with 240 8-inch photomultiplier
tubes (PMTs, tubes) mounted in pairs on the tank wall, and the main region is viewed
by 1,280 8-inch PMTs lining the inner surface of the optical barrier. Charged particles
created in neutrino interactions in the oil produce Cherenkov and scintillation light which
is detected by the PMTs. The spatial and temporal distributions of the detected light
provide all of MiniBooNE’s event identification information.

Figure 3.1 shows a cartoon of the primary detector components. Figure 3.2 shows the
veto and main regions during detector construction. The veto region is painted white to
maximize light collection from particles entering or leaving the detector, while the main
region is painted black to minimize reflections which would confuse the Cherenkov light
patterns.

The tank sits in a 15.2 m diameter cylindrical vault immediately below ground. A
concrete floor separates this vault from the counting room above it. The readout electronics,
data acquisition computers, HVAC system, and oil handling equipment sit in the upper
room. The entire detector enclosure is shielded by a few meters of overburden. Figure 3.3
shows this layout.

3.2 PMT support structure

The optical barrier forms part of the PMT support structure (PSS), shown in Figure 3.4.
The inner PMTs are attached with wire frames to the %—inch thick optical barrier panels.
Each panel supports two PMTs and is roughly 1 m wide by 0.5 m tall. The panels are held
against a series of latitudinal pipes (“lat pipes”) by strips of aluminum sheet overlapping
the panels and U-bolted to the lat pipes. The pipes themselves are supported by ~30 c¢m
struts attached to bosses welded to the steel tank. The individual strut lengths differ to
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Figure 3.1: A cutaway drawing of the detector. The thin white veto region is seen at the
edge of the sphere. The small circles represent PMTs (main) or PMT clusters (veto).

remove imperfections in the sphericity of the tank. Additionally, the strut-tank coupling
allows for angular adjustment of the strut so that its end can be leveled at the desired height
before the lat pipe is attached.

3.3 Oil

The detector is filled with ExxonMobil Marcol 7 mineral oil. The oil serves both as the
target for neutrino interactions and as the light-producing medium for resulting charged
particles. The properties of ten different oils from several vendors were measured and
compared against pre-established criteria before Marcol 7 was chosen [64]. Table 3.1 lists
some properties of MiniBooNE’s oil. Understanding the 0il’s optical properties is intimately
tied to the development of the detector simulation, and a detailed description is saved until
Chapter 8.

density:  0.855 g/cm®  (T=17.2 °C)
thermal expansion: 8.9x107* K~! (volumetric, T=14.2 °C)
index of refraction: 1.484 (A=400 nm, T=17.5 °C)
extinction length: 18 m (A=400 nm)
detected photons: 4.2 MeV~! (100 — 1000 MeV electrons)

Table 3.1: Properties of MiniBooNE’s Marcol 7 mineral oil.
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Figure 3.2: A view of the main and veto detector regions during construction.

The oil was delivered to FNAL via a series of rail cars over several months. A food-
grade tanker truck shuttled the oil from the railhead to the detector. The oil is typically
left static, although it can be circulated and chilled. (The chiller has never been used.) The
system includes an overflow tank to handle thermal expansion of the oil. Also, nitrogen is
bubbled into the tank at three locations (bottom, middle, top) to remove dissolved oxygen
and to maintain a nitrogen atmosphere above the oil surface.

3.4 PMTs

Of the 1,520 PMTs in the detector, 1,198 are Hamamatsu R1408 PMTs and 322 are Hama-
matsu R5912 PMTs. The R1408 PMTs were inherited from the LSND experiment while
the R5912 PMTs were purchased new. Table 3.2 gives an overview of these tubes.
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Figure 3.3: Detector hall. The personnel entrance (top right) leads to an anteroom con-
taining oil equipment. The oil overflow tank sits beneath the floor of this room. Further in
is the main electronics room. A floor hatch and curved stairway (not shown) provide access
to the vault below. From Ref. [63].

Hamamatsu R1408 Hamamatsu R5912

count: 1,198 322
operating voltage: ~2 kV ~2 kV
timing resolution: 1.7 ns 1.1 ns

1-PE charge resolution: 140% 50%
dark rate: 1.0 kHz 1.4 kHz

Table 3.2: The photomultiplier tubes in MiniBooNE.

Tube placement throughout the detector was chosen by tube type and measured dark
rate [65]. The veto region was instrumented with the quietest of the R1408 PMTs. The
older tubes have less chance of failure and the low dark rates keep the veto threshold down.
The remaining tubes were distributed throughout the main region.

3.5 Electronics and DAQ

[Note: This section, together with Chapter 4, may be skipped without loss of continuity.]

PMT anode signals are carried to preamp boards in the electronics room via 100-ft coaxial
cables which also supply each PMT with high voltage. The preamp (Figure 3.5) is based on
an ADY617 op-amp and provides ~20x amplification. Each preamp board includes sixteen
channels but is fed by a single high voltage supply. Therefore, the PMTs assigned to a given
board have comparable operating voltages. Individual voltages are selected with resistive
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Figure 3.4: The PSS described in the text. Also shown are veto clusters attached to the
outer tank. From Ref. [63].

voltage dividers on the boards.

The “QT boards” (Figure 3.6) convert the amplified anode pulses into more slowly
varying signals that still contain the charge and time information desired. The anode pulse
Vomt feeds an integrating capacitor which bleeds off with a time constant 7 ~ 1200 ns. The
voltage V, across the capacitor is digitized every 100 ns, in step with a 10 MHz GPS clock.
If an anode pulse is large enough to fire the on-board discriminator®, a separate voltage
V; begins ramping linearly away from baseline. The ramp continues until two clockticks
have passed, at which point it rapidly resets to baseline. V; is also digitized every 100 ns.
The data acquisition (DAQ) software looks at the stream of these V; and V; digitizations
coming from each channel, and for each time ramp it detects (i.e., for each firing of the
discriminator), the DAQ records four V, and V; values — one before the discriminator fired
and three after. This whole process is shown graphically in Figure 3.7.

The detector data stream, then, contains the following information from each hit:

e The PMT channel number.

e The clocktick, counted from the start of the event, that precedes the discriminator
firing. For the hit in Figure 3.7, this would be .

'threshold: 0.1 — 0.2 photoelectrons
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Figure 3.5: Preamp circuit for a single channel.
channels. From Ref. [63].

Each preamp board has sixteen such

e The four recorded V; values in ADC counts (Q_ADCO, Q_ADC1, Q_ADC2, Q_ADC3). Col-
lectively, the “charge quad”.

e The four recorded V; values in ADC counts (T_ADCO, T_ADC1, T_ADC2, T_ADC3). Col-
lectively, the “time quad”.

If a hit has more than ~20 photoelectrons, V, becomes too large for the ADC. For these
“saturated” hits, the DAQ writes out additional quads until V; is back on-scale.? Chapter 4
describes how this data stream is used.

2More precisely: the DAQ keeps writing quads for a hit until it has written a completely on-scale quad.
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From Ref. [63].
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Figure 3.7: Pulses in the front-end electronics. Vjm¢ is the incoming anode signal. Its
integral, convolved with an exponential decay, is V;. The vertical orange line indicates
when the discriminator fired. This firing induces the start of the time ramp V;. V; resets
after two clockticks have passed. For this hit, the DAQ records the four V, and V; values
digitized at clockticks ¢, i+ 1, ¢ + 2, and ¢ + 3. (Adapted from Ref. [63].)

3.6 Calibration system

Laser flasks

Suspended within the oil volume are four 4-inch spherical light dispersion flasks filled with
Ludox® colloidal silica [66] and fed by optical fibers from a diode laser.> One flask is
within a few centimeters of the tank center, and the others are distributed throughout the
tank. The laser pulses sent to these flasks are used for detector calibration and monitoring.
Figure 3.8 shows a flagk prior to its installation.

A pulsed diode laser provides light bursts lasting ~100 ps each. The laser output follows
an optical fiber into a mechanical switch box which selects the target flask. The switch
box and laser driver are computer controlled. Under normal running conditions, only the
detector-center flask is used, with pulses from a 397 nm laser head occurring at 3.33 Hz.
(A 438 nm laser head is also available.)

Muon tracker and cubes

Immediately above the detector is a four-plane cosmic ray muon hodoscope, the “muon
tracker”. The lower planes of the muon tracker rest directly on the tank’s top access hatch
while the upper planes hang from the ceiling 1 m above the lower planes. Each upper plane

3Lasers and laser drivers are from PicoQuant GmbH.
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Figure 3.8: A laser flask on its side before installation. The thin metal tube running through
the neck of the flask contains a light guide which extends just beyond the end of the tube.
An optical fiber (not shown) is coupled to this light guide. The black spot on the bottom
of the flask prevents undispersed laser light from hitting tubes directly below.

comprises 23 strips of Bicron BC-408 plastic scintillator. Each scintillator strip measures
10 cm x 228 cm X 1.59 cm and has an acrylic light guide and 2-in PMT attached at each end.
The lower planes’ strips measure 6 cm X 170 cm X 1.59 cm and are read out at one end only.
The two upper planes are rotated 90° relative to one another to provide 2D positioning;
likewise for the lower planes. Using the muon tracker, we obtain a sample of muons with
known directions (09g=2°) and positions in the main detector (ro=575 cm; 0;,~10 cm).

Suspended at depths ranging from 30 cm to 400 cm are seven small cubes of scintillator
each housed in a black aluminum box and read out via an optical fiber coupled to a PMT in
the electronics room. These cubes are 5 cm wide except for the deepest cube which is 7.6 cm
wide. Of the two cubes at 30 cm, one sits beneath a 15 cm tall cylindrical “coffee can” light
shield, resulting in 15 cm of visible muon pathlength. A few hundred hodoscope-tracked
cosmic ray muons stop and decay in these cubes each month. These muons have known
origins, directions, and (thanks to the cubes) pathlengths through the oil and are used to
study energy reconstruction, scintillation light, and discriminator time slewing.

3.7 Trigger and readout

The DAQ records an event when one of several trigger conditions is met. Among these is
the presence of a beam spill: any time a Booster batch is extracted and directed toward
the MiniBooNE target (corresponding to the coincidence of FNAL ACNET signals 1D and
1F), a 19.2 us window of detector activity is stored. Each event written to disk includes:

e global time information for synchronizing with external DAQ systems
e zero-suppressed PMT charge and time digitizations

e muon tracker and cube readouts
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e information relating to the trigger itself (e.g., the laser firing time for laser triggers)

e ACNET information (beam alignment and luminosity, horn and target conditions)
when applicable.

A list of MiniBooNE triggers follows. Table 3.3 gives typical rates. Phrases in bold indicate
the trigger names used in the table.

Beam

As mentioned, a proton batch destined for the Booster neutrino beam induces a trigger.
The NuMI neutrino beam also triggers the DAQ. A beam trigger trumps all other
triggers and disarms the laser driver.

Cosmic activity

Several triggers take advantage of PMT “sum cards” which provide a running tally of the
number of PMTs that have fired in the last 200 ns. More specifically, the trigger receives
a set of bits indicating whether certain hardware-set thresholds for main and veto PMT
multiplicities have been reached. The thresholds are 10, 24, 60, 100, and 200 for main
PMTs; 4 and 6 for veto PMTs.% So, a simple veto activity trigger is constructed from the
condition Nyeto > 6, and a main activity trigger occurs whenever Npin > 10. A Michel
trigger® happens when all of the following are true: Nyeto < 6, Npain > 24, and cosmic-
muon-like activity (Nyeto > 6 and Npain > 100) occurred sometime between 3 ps and 15 us
before now.

The rates are far too high for the DAQ to trigger on every instance of the above con-
ditions, so only some of these events are actually taken. The scaling factors are listed in
Table 3.3.

Calibration and monitoring

At a rate of 2.01 Hz, random detector activity is recorded. Other trigger conditions: the
laser fires; the muon tracker has four-plane coincident activity; or, a cube shows activity
while Npain > 100. An additional beam-laser trigger occurs when there is a Booster
extraction for antiproton stacking (ACNET signals 14 and 1F). This provides laser events
during Booster activity which can be compared to the usual laser events.

Other

The big v trigger asks if activity is consistent with a high-energy neutrino event despite the
lack of beam (Nyeto < 6 and Np,in > 200). The follower triggers write blocks of activity

4Typical multiplicities are discussed in Chapter 5. Also, Nmain and Nyeto refer here to trigger-level sums
in this section only. We use Nmain and Nyeto elsewhere to represent “subevent” multiplicities, which we
define in Chapter 5.

SEvents from this trigger are not used in the analysis. Michel electrons (stopped p-decay electrons) can
be collected in a more controlled fashion from beam and random triggers.
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after beam triggers when certain multiplicity conditions are met in both the beam window
and in the period after. The supernova trigger looks for contained activity (Nyeto > 6 and
Nmain > 60) when no cosmic activity (Nyeto > 6 and Npain > 100) has occurred in the past
15 us. None of these miscellaneous triggers plays a role in this analysis.

typical scaling
trigger rate (Hz) (if not 1/1)
Booster v beam 0tob
NuMI v beam 0.4
main 0.3 1/90000
veto 0.5 1/5001
Michel 1.2 1/600
random 2.0
laser 3.3
cube 1.2
tracker 0.7 scaling set in hardware
beam-laser 0.8
big v 0.8
follower 1.0
supernova 10.2
total ~25

Table 3.3: MiniBooNE triggers. Typical rates (post-scaling) are shown in the middle col-
umn. The right column indicates the fraction of triggers actually recorded.
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Chapter 4

PMT charge and time

[Note: This technical chapter may be skipped without loss of continuity.]

As described in §3.5, each recorded event includes charge and time “quads” containing PMT
hit information. We need to extract two things from each hit’s quads:

1. the time of the hit (relative to the times of the other hits, at least); and,

2. the number of photoelectrons (PE) in the hit.

4.1 Determining ¢t
We calculate a hit’s time ¢ with

t = Traw + (100 IIS) telock + Atoffset + Atslew(QraW) . (4-1)

Traw ranges from 0 ns to 100 ns and measures the time of the hit relative to the 10 MHz
clocktick that immediately preceded it. (See Figure 4.1.) It is calculated from the {T_ADCn}
(the time quad) as described below. The second term adds the time of the preceding clock-
tick itself as measured from the start of the event. This term is clearly a multiple of 100 ns,
and it contributes the coarse timing that complements the fine timing provided by Tiay-
The third term, Atygger, iS a channel-dependent calibration constant that removes channel-
to-channel timing differences arising from, among other things, differing cable lengths and
dynode structures. The final term, Atgew(Q@raw), accounts for the charge-dependent time
slewing caused by discriminating a pulse with finite rise-time.

If we know the slope of the time ramp, we can calculate T,y with
T_ADCO — T_ADC2

Traw = (200 ns) — — , (4.2)

where m is the magnitude of the ramp’s slope in (ADC counts)/ns. (A typical slope is
1.2 ADC counts/ns.) Traw is actually over-specified by the {T_ADCn}, and we could have
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Figure 4.1: The time quad and Ti,%. Vpmt is the hit’s anode signal. The thin vertical
line indicates when the discriminator fired. The {T_ADCn} values recorded for this hit are
identified by the solid dots. T;,w measures the time between the discriminator firing and
the preceding clocktick. It is determined from the {T_ADCn} and the (known) slope of the
time ramp.

equally well used
T_ADCO — T_ADC1

m

T!. . = (100 ns) —

raw

(4.3)

We might consider reporting Tr.w as, say, the average of these two expressions. However,
the start of the time ramp is delayed by 12.5 ns due to the finite response time of the QT
board electronics, and T_ADC1 consequently reports a baseline value for 12.5% of hits. For
these hits, only Eq. (4.2) is meaningful. Thus, we use the average of Eq. (4.2) and Eq. (4.3)
only when the following condition is met:

T_ADCO — T_ADC1 > 20 ADC counts . (4.4)

Otherwise, we use Eq. (4.2) alone.

As we shall see, the charge calculation expects T,y to fall in the range 0 ns to 100 ns
(although some spillover is fine.) The time ramp delay causes the above calculation to
produce T,y ’s in the range ~13 ns to ~113 ns, so our final expression includes a fixed shift
Atnydge to remedy this:

1 1 )
. { 1 [300 ns — L (2T_ADCO — TADC1 — T ADC2)] + Atpuage  if Eq. (4.4) true

200 ns — L (T_ADCO — T_ADC2) + Atqudge if Eq. (4.4) false
(4.5)
with Atpugge = —12.5 ns and with the channel-dependent slopes m determined beforehand

(§4.3).
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4.2 Determining q

We would like to know how many photoelectrons were in each hit. However, our tubes have
a broad charge response (Figure 4.2), and we cannot determine that a given hit definitely
had, say, 3 photoelectrons. We estimate the number of photoelectrons with

Qra,w _ Qraw (4 6)

q = = )
< 1PE> g

raw

where Qraw is any quantity proportional to anode charge and g = (QLLE) is the mean value

of this quantity for single-PE hits. g is a channel-dependent calibration constant determined
from low-intensity laser flask events (§4.3).
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Figure 4.2: Single-photoelectron charge response of Hamamatsu R5912 PMTs. Adapted
from Ref. [67].

4.2.1 The shape of V,

Example anode pulses Vi are shown in Figure 4.3 for both tube types. The pulses exhibit
overshoot/ringing features which impact the integrated pulse V, on relevant time scales.
(Recall the 100 ns digitization period.) Given Vpm¢, one can compute the expected V, with

—(¢=t")

t
Vy(t) o / Vomt (') € dt' . (4.7)

Figure 4.4 shows V; so obtained for our two traces (taking 7 = 1200 ns, see §B.1). Figure 4.5
shows V, as measured on the QT board. We use a reference shape Vqref like these to turn
the {Q_ADCn} digitizations of V, into a hit’s Qraw value.
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Figure 4.3: Vpm; for our tubes. The traces are average PMT signals from channels 1154
(top) and 1153 (bottom) as measured from the monitor port of their QT board with an
oscilloscope. Channel 1154 (1153) is attached to an old (new) tube.
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Figure 4.4: V; as derived from Vpm¢. The two thick traces are the results of Eq. (4.7) applied
to the Vpm¢ signals shown in Figure 4.3. The top (bottom) plot is from channel 1154 (1153),
an old (new) tube. The thin trace superimposed on each plot shows an idealized V; created
by artificially removing the ringing from the input signal Vpmg.
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Figure 4.5: V; measured directly. The signal Vj,n,; from the monitor port of a QT board was
routed into a separate benchtop QT board. Each V; trace shown is the average signal just
upstream of the charge ADC on the benchtop board. The left (right) plot shows channel
1154 (1153), an old (new) tube. These V, traces largely agree with the curves obtained
using Eq. (4.7) and shown in Figure 4.4.

4.2.2 Calculating Q..

To good approximation, the shape of V,m¢ (and, consequently, V;) is independent of charge.
That is, an N-PE signal looks just like a 1-PE signal except it is N times larger. Calculating
Qraw for each hit, then, amounts to determining the amplitude of the V, signal that was
digitized. We know which four points along V correspond to the four digitizations {Q_ADCn}
because we know Tr,y. We fit the hit’s three baseline-subtracted charge values

Q_ADCn' = Q_ADCn — Q_ADCO n=1{1,2,3} (4.8)

to oquref, where « is the amplitude we are after and Vqref is a fixed-amplitude reference
curve. This is shown schematically in Figure 4.6.
The best-fit normalization is proportional to the anode charge, so it can serve as Qraw:

Qraw = gt - (4.9)

Giving the three {Q_ADCn'} equal weight!, we can write the result of the fit as:

3
Z Q-ADCr’ V! (n; Traw)
Qraw = n:13 ; (4.10)

S [V s Taw)]

n=1

where %ref(n;Traw) is the value of V;ef corresponding to Q_ADCn' given the hit’s T},y. In

'One could imagine doing otherwise.
2This expression is modified later.
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Figure 4.6: Fitting Vql”ef to the {Q_ADCn'}. Having calculated Tyay from the {T_ADCn}, we
know how the reference curve V;]rmc should line up in time with the digitizations (solid dots).

The curve running through the {Q_ADCn'} represents oquref, with a determined from a fit
to the points. The quantity « serves as @Qaw- For this hit, a=0.5.

practice, the reference curve V;]ref is stored as a lookup table indexed by n and T}, binned

in 0.5 ns intervals.

4.2.3 Establishing Vqref

While we could establish Vqref using oscilloscope traces, as in §4.2.1, it is more convenient
to extract the reference curve from the data stream itself, which we do as follows.

Low-intensity laser events provide low-charge hits at all possible values of Ti,. That
is, over the course of a laser run, a channel will sample all parts of the V; curve, reporting
these samples as the {Q_ADCn'}. Though each hit has a different (unknown) charge @,
the mean charge (@) is constant. Further, the mean charge is independent of Ty, — i.e.,
independent of which part of V; is being sampled. In each n and T,y bin, we calculate
the mean {Q_ADCn’} seen over the run. This forms a full V, curve whose normalization is
representative of a hit with charge (@Q). Declaring this (arbitrary) normalization fixed, we
now possess a reference curve Vqref. We create two such curves, one for old tubes and one
for new. Figure 4.7 shows the result. While the fine structure of the curves is washed out
by the multi-PMT averaging, the important O(100 ns) structure agrees with what we see
in the scope traces.
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Figure 4.7: Forming Vql”ef from the data. For each of the 200 T1,y bins, we have plotted the
mean baseline-subtracted quad value (Q_ADCn') (n={1, 2, 3}), where the mean is determined
using all prompt hits in a low-intensity laser run. (Q_ADCn') for a given Ty, bin is plotted
with abscissa n(100 ns) — Tyay, where Ti,y is the low-edge of the bin, so that the continuous
form of V; is manifest. The vertical dashed lines separate the contributions from the three
n values. All old (new) tubes contribute to the top (bottom) curve, excepting known bad
tubes which are excluded.

4.2.4 Completing the picture

We have ignored “saturated” hits up to now. Recall that a saturated hit is one whose V is
too large for the ADC. The DAQ recovers from this by writing additional quads for the hit
until V; is back on scale. If our reference curve extends out far enough, we can simply fit
these “n>3" quad values.®> We obtain the extended reference curves using a special DAQ
run (see §4.3.3), and we handle saturated hits by generalizing Eq. (4.10) to

Z Q_ADCn/ V;Iref(n; Traw)
__ {all usable n}

Ty )]

{all usable n}

, (4.11)

where any usable Q_ADCr/ is included in the fit. §B.2 outlines what makes a Q_ADCn' usable.

To summarize the entire charge and time calculation sequence for a hit:

1. Calculate Tray from the {T_ADCn} using Eq. (4.5).

3We introduce here the convention of using Q_ADC4, Q_ADC5, etc., to refer to a follower quad’s Q-ADCO,
Q_ADC1, etc.
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2. Given Tiay, calculate Qrayw using Eq. (4.11). That is, calculate Qpay by fitting the
reference curve to the {Q_ADCn'}.

3. Given Qraw, report ¢t using Eq. (4.1). (Recall that the slew correction depends on
Qraw-)

4. Given Qraw, report g using Eq. (4.6).

The steps are slightly different for those channels recording diagnostic, non-PMT pulses
(e.g., trigger signals), as the above reference curves are not appropriate for these. The
charge q reported for a non-PMT hit is just Q_ADC2’, and no slew correction is applied when
calculating t.

4.2.5 Verification

We can examine whether the fit procedure actually works — that is, whether the {Q_ADCn}
behave as expected on a hit-by-hit and channel-by-channel basis. Figure 4.8 shows four
typical Qraw fits, and the {Q_ADCn} indeed track the shape of the reference curve within
a few ADC counts at all n. We can better quantify this agreement by looking at the fit
residuals

A, = Q_ADCn' — Qraquref(n; Traw) » (4.12)

where a residual A,, exists for each Q_ADCn’ used in the fit. For non-saturated hits, we have
only n = 2,3. Figure 4.9 shows the distributions of As and Aj for hits in a low-intensity
laser run. The spiked structure is due to the intrinsic discreteness of the {Q-ADCn}. Of
particular note are the widths of the distributions: RMS < 0.5 ADC counts. Given that a
typical single-PE hit has |Q_ADCn/| ~ 10 ADC counts (for n = 2,3), we can say that hit-
to-hit and channel-to-channel variations in V, are contributing <5% smearing to our low
charge calculations. The intrinsic PMT charge resolution is much larger, O(100%).

4.3 Obtaining calibration constants
Five calibration tables are required:

e the time ramp slopes m,

e the timing offsets Atyfset,

e the extended charge reference curves Vqref,

e the charge scale factors g,

e the slew corrections Atgew(Qraw)-

The charge and slew curves (one version for old PMTs, one for new) are extremely stable
and, while checked periodically, are established only once for the MiniBooNE run. The
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Figure 4.8: Four sample hits viewed with the “hit display”. The top panels show two low-
charge hits, one from an old tube and one from a new tube. The bottom panels show two
high-charge hits. In each panel, the large solid dots show the Q_ADCn' for the hit. The trace
shows the result of the fit, i.e., Qraw V:]ref. This information is shown twice in each panel,
once with a variable vertical scale (top sub-panel) and once with a fixed vertical scale (lower
left sub-panel). The fitted curve tracks the digitizations well. Note the ignored saturated

digitizations in the bottom examples.
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Figure 4.9: Qyaw fit residuals for low-intensity laser hits. The residuals for Q_ADC2’' and
Q-ADC3' are shown, with old (new) tubes on the left (right). The spiked structure is due to
the intrinsic discreteness of the {Q_ADCn}.

others are updated every four days by an automated system which measures the calibration
constants tube-by-tube while also performing many channel health checks.*

4.3.1 The slope m

The time ramp slope is measured by taking the average of T_ADC2 — T_ADC1 over O(100k)
hits from laser triggers. Many of the hits are cosmic ray induced, but any hit works for
determining m. A hit is only included in the average if T_ADC1 — T_ADCO > 20 ADC counts.
This is necessary due to the 12.5 ns time ramp delay mentioned previously.

4.3.2 The timing offset Aty

Laser triggers are again used, but cuts are applied to remove events contaminated with
cosmic activity.> We begin by calculating each hit’s time ¢ using Eq. (4.1), except that (a)
the Atofrset term is left off, (b) the laser firing time (recorded separately by the DAQ) is
subtracted, and (c) the photon time-of-flight from the laser flask to the PMT is subtracted
(using ¢/n = 19.48 cm/ns; see §8.3.2. The flask used for calibration is 4 cm away from tank
center.) An example ¢ distribution is shown in Figure 4.10. The peak of the distribution is
found via a fit to a § function plus an exponential tail, all with Gaussian smearing.

4Channels which fail these checks are excluded from analysis in both data and simulation. Thirty-four
main PMTs (2.7%) and zero veto PMTs are so excluded.
® Nyeto <11 and Nmain < 80. See Chapter 5 for definitions.
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Figure 4.10: An example ¢ distribution used to establish timing offset calibration constants.

The extracted peak times for all PMTs are shifted en masse so that the mean peak time
is zero, thereby removing the arbitrary global offset. The negative of each PMT’s shifted
peak time is used as its Atofiget:

AT = (BT ey, ) (w13

4.3.3 The extended Vqref

The procedure described in §4.2.3 yields the reference curves V;Iref(n;TraW) for n<3. A
special DAQ running mode exists that writes out all digitizations rather than only those
associated with hits. Taking laser data in this configuration allows us to create a reference
curve that goes beyond n =3 using the methods of §4.2.3.

The shape of V; is not completely independent of charge, though. Noting that the n <3
part of V;Iref(n; Traw) is used only for lower charge (non-saturated) hits and that the n >3
part is used only for higher charge (saturated) hits, we can account for some of the charge
dependence by forming Vqref(n;TraW) piecewise. We use single-PE hits for the n <3 part
and high-charge hits ((¢) =7 PE) for the n >3 part. We merge the two parts into a single
curve by scaling one to the other such that they overlap in the transition region (250 ns to
300 ns). The result is shown in Figure 4.11.
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Figure 4.11: The full Vqref. (Left) The reference curves for old and new tubes obtained using
the merging procedure. The regions left of the vertical lines were formed using low-charge
data; right of the vertical lines, high-charge. (Right) In black is the new tubes’ merged curve.
In red is the analogous curve obtained using only low-charge data. The shape change is
apparent.

4.3.4 The charge scale factor g

Recall that g = ( }aIV)VE>. We calculate these averages using hits from low-intensity laser
events. There are two complications.

Dirty hits. Low-intensity laser events include all manner of hits (dark noise, pre-
pulsing, electronics pickup). These represent backgrounds to the determination of g, as
each source has, in general, a mean @,y that differs from the mean @,y of clean single-
PE hits. Fortunately, these “dirty” hits occur infrequently enough that a tight timing cut
eliminates their relevance. Figure 4.12 supports this claim, showing that hits near the
prompt peak have a clean Qraw distribution, devoid of low- and high-charge features seen
away from the peak. We measure g using hits from the prompt window only. ¢ is sensitive
to the particular choice of window at the 2% level.

Multi-PE contamination. We can correct for multi-PE contamination using Poisson

statistics by putting

g = <Qraw> ﬁ ’ (4'14)

where p can be loosely interpreted as the probability per event of getting a hit on a particular
tube. For our standard low-intensity laser runs, p=0.05. The corresponding multi-PE

correction is ~3%.

4.3.5 The slew correction

The slew correction Atgew (Qraw) in Eq (4.1) accounts for the fact that larger PMT signals
fire the discriminator earlier than smaller ones. These slew corrections are stored as look-up
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Figure 4.12: Qraw distributions for hits in various time regions. The data are from a low-
intensity laser run (Run 1659) with known bad tubes removed and with cosmics suppressed
using the cuts Npain < 60 and Nyeto < 7 (see §5.2). The left set of plots shows data for old
tubes; the right set, new tubes. The corrected time distribution for each is shown at the
top with a logarithmic vertical scale. Four time regions are identified:

A. —80 ns <t < —60 ns (off the left edge of the time plot)
B. -30ns <t < —10 ns
C. —1.75 ns <t < 2.25 ns

D. 4ns<t<20mns.

The Qraw distributions for hits in these four time regions are shown in the bottom panels,
with corresponding labels A through D. (These plots have linear vertical scales.) Note that
the prompt region (C) exhibits the characteristic single-PE charge shape, while the off-
peak regions (A, B, and D) have extraneous low- and high-charge hits. This is particularly
noticeable for new tubes.
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tables, with one table for old tubes and one for new. They are established as follows.

We set up Nping bins of Qraw- For hits in each bin, we form a histogram of hit times
calculated using Eq (4.1) except without the slew term and (as in the offset determination
above) with the laser firing time and photon time-of-flight subtracted. From the resulting
distribution we extract the peak time, which varies from one @raw bin to the next. This
Qraw-dependent peak time function is the slew correction. An overall constant term is not
relevant in the slew table, and we are free to shift the curve as we like. We choose a shift
such that old tubes have Atgew(Qraw=1) =0 ns.%

Single-PE hits only populate the slew tables out to a few Qray units, yet we must report
times for higher-charge hits. We populate the high charge regions of the slew tables by
mixing in higher intensity ((¢) ~4 PE) laser data. The final tables are shown in Figure 4.13.

old tubes

1 2 3 4 5 6 7 8 9 10

&
FrTT]

raw

At (ns)

1 2 3 4 5 6 7 8 9 10

Q

'
6]
FrTT

raw

Figure 4.13: The slew tables. The correction Atgew(Qraw) is plotted for old tubes (top)
and new tubes (bottom). We show here only the Qraw < 10 region; the tables continue out
t0 Qraw = 50. Qraw=1 corresponds to about 1 PE.

5We give old and new tubes the same shift, letting the new tubes’ Atgew (1) fall where it may. If we
wished, we could shift them independently, accounting for the difference with Atogses-
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Variable-width charge bins are used for the slew tables. The bin number N is given by

N = [log,(Qraw)] + N1 . (4.15)

This binning takes advantage of the higher statistics we have at lower charges while keeping
the bin-to-bin change in Afge, small. We use b=1.08, N; =50, and total number of bins
Nping = 100.

Note that two effects actually contribute to time slewing:

1. Discriminator slewing. This is the familiar phenomenon whereby a large pulse crosses
threshold sooner than a small pulse.

2. “Pile-up” slewing. When a hit has multiple photoelectrons, the threshold-crossing
time depends on the creation times of the individual photoelectrons and (for nearly
simultaneous photoelectrons) the jitter in transit times down the PMT dynode stack,
which gives each additional photoelectron a shot at providing a (randomly) earlier
anode pulse.

Pile-up slewing cannot be estimated without knowledge of the event topology. The recon-
struction algorithm (Chapter 9) knows about event topology and accounts for this phe-

nomenon.
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Part 11

Analysis
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Chapter 5

Analysis overview

5.1 The task

The signature for LSND-like v, — v, oscillations in MiniBooNE is an excess of O(100) v
charged current events. This excess would sit above a comparable number of intrinsic v,
events and a much larger number (1.7x10%) of v, events. The v, — v, appearance search,
then, needs the following:

1. an event selection with efficient v, rejection and v, acceptance
2. knowledge of the v, and v, selection efficiencies
3. estimates of the v, and intrinsic v, fluxes through the detector

4. estimates of the relevant cross sections.

The strong v, rejection and high v, acceptance of item (1) must be reached without gen-
erating unacceptably large systematic errors in (2). Items (2)—(4) are often realized with
the support of a near detector, with far-to-near ratios eliminating the largest systematic
errors. MiniBooNE does not have a near detector, so we use a combination of available

measurements, constraints obtainable from our own data, and Monte Carlo simulations.

5.2 Subevents

For each “spill” of neutrinos sent through the detector, the DAQ records all PMT activity
in a 19.2 us window starting 4.6 us before beam arrival time. A given beam spill might have
a distribution of PMT hit times like the example in Figure 5.1. Two clusters of activity
are visible in the figure — one from a v, charged current interaction and another from the
delayed decay of the p~ that was produced in the event and which came to rest in the
detector.

These clusters of time-related PMT hits, or “subevents”, are extracted from each beam
spill as follows: a subevent is any group of at least ten hits in which no two consecutive
hits are separated by more than 10 ns, with the exception that up to two time gaps of
10 ns — 20 ns are allowed. Note:
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Figure 5.1: A portion of a beam spill containing a candidate v, charged current event. The
first cluster of hits is from the primary interaction, and the second is due to the delayed
decay of the muon (7, = 2000 ns).

e If a subevent includes six or more PMT hits in the veto region, the beam spill likely
involves an exiting track or an incoming cosmic ray. (See Figure 5.2.) Spills with any
such “uncontained” subevents are excluded from the oscillation analysis.

e If a beam spill has exactly two contained subevents, the second subevent is typically
due to the electron from the decay of a stopped muon from the first subevent.

The top panel of Figure 5.3 demonstrates the latter point, showing that the reconstructed
energies of second subevents follow the expected “Michel” electron spectrum [68]. The
bottom panel shows the corresponding Np,in distribution. Cosmogenic Michel subevents
are readily eliminated by requiring that candidate neutrino subevents have more than 200
main PMT hits: Npyain>200.

Figure 5.4 provides insight into the effects of the Ny ain >200 and Ny, <6 cuts by showing
subevent times! with these two cuts variously present and absent. With both cuts on,

essentially no out-of-time activity remains.

'subevent time = average time of the subevent’s PMT hits
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Figure 5.2: Distribution of veto multiplicity Nyeto for two classes of low-intensity laser
flask events. (Solid) Clean, cosmic-free laser events have fewer than 70 hits in the main
region, and an Npy,in <70 cut leaves behind mostly uncontaminated laser events. The solid
histogram thus shows a large spike for Nye;o<6. (Note the logarithmic vertical scale.)
(Dashed) Too much activity in the main region indicates that a cosmic muon is present,
and the dashed histogram shows that the veto is typically active when an Np,,i,>200 cut is
applied. The two peaks correspond to one veto-crossing or two (i.e., whether the entering
muon stops in the main region or continues out the other side). These peaks appear in
the solid histogram as well since muons that stop soon after entering the tank (first peak)
or that pass obliquely through the tank (second peak) can leave behind few enough hits
to satisfy the nominally clean sample’s Np,in <70 requirement. In the oscillation analysis,
cosmic muon contamination is eliminated by requiring Nyeo<6.
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Figure 5.3: Michel electrons (stopped u — evv). (Top) Reconstructed electron energies for
Michel electron candidates, each of which is the second subevent in a beam spill with exactly
two contained subevents. The Michel endpoint of Ey = 53 MeV can be seen (resolution
@ Ey: 12%). (Bottom) The number of main PMT hits present in these subevents. An
analysis cut of Ny,in>200 is applied in the v, — v, search to eliminate stray Michel electron
subevents.

5.3 Neutrino events

If we are to learn the incoming neutrino’s flavor, we must select charged current interactions.
If we are to observe any oscillation-induced spectral distortion, we must select events for
which we can calculate the incident neutrinos’ energies. Charged current quasi-elastic (CC
QE) scattering:

vi+n—1 +p (5.1)

satisfies both of the these criteria and accounts for ~40% of the total v, and v, cross sections
at MiniBooNE energies.

The CC QE final state involves a charged lepton and a recoil proton. While both emit
some scintillation light, the lepton’s Cherenkov emission dominates the event. (The proton
is typically below its 870 MeV /c Cherenkov threshold.) This Cherenkov light is the main
source of event information: lepton direction, energy, flavor, and the interaction vertex.

Contained v, CC events are usually flavor tagged by the observation of the u decay.
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Figure 5.4: Subevent times. The topmost histogram (black) shows the times, relative to
the start of the beam spill, of all subevents from a portion of the MiniBooNE run. With
no cuts applied, the beam-on excess is apparent. The rising slope within the beam spill
and the decaying feature immediately after are due to beam-induced Michel electrons. The
second histogram (red) includes only those subevents that sit above the Michel electron
endpoint — that is, those subevents satisfying Npain>200. The sloped Michel features are
now absent. The third histogram (green) shows only contained subevents, Nyeto<6. The
bottom histogram (blue) includes both cuts and reveals a clean beam-only distribution
with negligible out-of-time activity. A timing cut of 4000 ns < (subevent time) < 7000 ns
is applied to all candidate neutrino interactions in the analysis, but it has no appreciable
effect given the multiplicity cuts Npain>200 and Nyeto<6 already used. We mention the
timing cut nowhere else.

When this tag fails?, the p flavor must be learned from the pattern of Cherenkov light.
Since the muon travels many times the PMT spacing before it builds up appreciable angu-
lar deflection from multiple Coulomb scattering, it creates a ring of Cherenkov light at the
PMT surface with a sharp outer edge that fills in as the muon approaches the tank wall.
In contrast, electrons from v, interactions lose energy mostly via bremsstrahlung (critical
energy F.~80 MeV [9]). Thus, the electron signature is a diffuse ring due to the electro-
magnetic shower induced. Simulation is used to quantify the differences in the electron and
muon light patterns. An example muon ring is shown in Figure 5.5. Data and simulation
are compared in Figure 5.6.

2causes are: p~ capture on carbon (8%, §8.2), u/e subevent overlap (8%), and below-threshold decay
electrons (2%)
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Figure 5.5: A candidate v, CC QE event. A timing cut is applied to remove delayed
fluorescence and scintillation light so that the prompt Cherenkov ring can be seen. Each
ball represents a PMT hit: size < charge, color < time.

The electromagnetic shower induced by an electron is indistinguishable from one in-
duced by the eTe™ pair from 7 conversion. Consequently, events with «’s in the final state
constitute backgrounds to the v, search. Indeed, neutral current 7% production (with the
subsequent decay 7° — 77) is the largest source of misidentified v, events. The creation of
A resonances sometimes leads to the radiative decay A — N+, resulting in another misiden-
tification background. Figure 5.7 reviews the signal and backgrounds discussed so far.

5.4 Blind analysis

Understanding the neutrino fluxes and cross sections, developing the particle identification
methods, and predicting final event rates and spectra were all carried out without the pos-
sibility of knowing whether an LSND-like oscillation signal was present in the MiniBooNE
data. This “blindness” was enforced by embargoing any event that satisfied conservative v,
selection criteria. As needs and understanding progressed, so did the aggressiveness of the
criteria. Aspects of this blindness appear in subsequent chapters.
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Figure 5.6: Ring profiles. (Top) Electrons from stopped-u decay. The best-fit electron
direction and starting vertex are found, and PMT hits are histogrammed according to their
angular location about the reconstructed vertex relative to the reconstructed direction.
Prompt (red) and delayed (blue) hits are shown separately. The Cherenkov ring can be seen
as prompt light. (Bottom) v, CC QE events. The cavity in the delayed light histogram
is due to electronics lockout in channels that received prompt hits. It is more pronounced
in the muon plot due to the higher PMT occupancy (evident in the vertical axes.) Also,
these higher energy muons result in extended tracks which hide the isotropic nature of the
delayed light (cf. the flat cos 8 distribution in the top panel). Data and simulation are both
shown.
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Figure 5.7: Feynman-esque diagrams of four important processes in the v, appearance
search. (a) Signal and intrinsic v, events are indistinguishable. (b) v, CC QE events,
when not tagged by their decay electron, must be identified by the muon’s Cherenkov
pattern. (c) 7%’s produced in neutral current interactions typically decay to two photons
(shown). The two +y-induced EM showers are sometimes mistaken for a single EM shower,
resulting in misidentification. (c) Neutral current production of a A resonance can result
in de-excitation to N+ (shown), leaving behind a single EM shower.

5.5 Simulation chain

Signal and background estimates are produced using an extensive Monte Carlo simulation
chain. A variety of external and internal (MiniBooNE) data is used to tune the simulation,
the principal components of which we list here:

1. GEANT4 [69] simulation of the target and decay regions, including secondary hadron
production, propagation, and decay (Chapter 6);

2. Nuance v3 [70] neutrino cross section model (Chapter 7);
3. GEANTS3 [71] detector simulation (Chapter 8);

4. simulation of the PMTs, electronics, and DAQ (Chapter 8).
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5.6 Systematic error propagation

Most MiniBooNE systematic uncertainties can be cast as uncertainties in the above sim-
ulation components. These systematic uncertainties are propagated by varying simulation
parameters according to their underlying probability density functions (p.d.f.’s) and observ-
ing how relevant downstream quantities (often histogram bin contents) change. Doing this
many times allows one to build a joint p.d.f., usually encapsulated in a covariance maftrix,
for these downstream quantities. This Monte Carlo method for propagating uncertainties
is discussed in context in Chapter 12.

5.7 Likelihood ratios and M,,

The maximum likelihood event reconstruction described in Chapter 9 plays an important
particle identification role. Best-fit track parameters and the corresponding maximum like-
lihoods are extracted under three hypotheses: electron, muon, and 7°. Ratios of the maxi-
mum likelihoods provide differentiation among the three hypotheses. If we label the three
likelihoods L., £, and L0, we can write two particle identification discriminants used in
the analysis:

log(Le/Ly) = F,—Fe (5.2)
log(Le/Lyo) = Fpo—Fe, (5.3)
where the F' quantities are those introduced in Chapter 9: F' = —log(L). The sign con-

vention in Egs. (5.2) and (5.3) is such that electron-like events have more positive values
than p- or 70-like events. The expectation is that signal and background roughly straddle
zero (L.=L, < log(L./L,)=0). Events are also fit under a generic yy hypothesis with no
specified invariant mass. (The 7° hypothesis enforces a mass of M,0.) The resulting fitted
mass M., is used to select/reject 7Ys. Cuts on these quantities are established and studied

with simulation.
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Chapter 6

Neutrino flux prediction

6.1 GEANT4 beamline description

MiniBooNE uses a GEANT4-based [69] Monte Carlo simulation of the target and decay
regions. Simulated pions and kaons produced in p-Be interactions are propagated through
the target pile (beryllium target slugs, aluminum horn, iron shielding, concrete support
structures, iron collimator) and the horn’s magnetic field. Downstream, the particles en-
counter the decay pipe, the 25 m and 50 m absorber cavities, the 50 m absorber plates, and
the overburden.

6.1.1 Proton beam

The process begins with 8 GeV kinetic energy protons 1 cm upstream of the target. The
transverse positions (z,y) and directions (6, 8,) of the protons are chosen from correlated
Gaussian distributions with the parameters listed in Table 6.1. The correlations are set
such that the beam gets focused to a waist halfway down the target. Reasonable variations
in the beam’s profile and convergence properties produce negligible change in the predicted
flux (0.8%) [72].

Beam protons stepped through the target will undergo elastic, quasi-elastic, and inelastic
interactions. The cross sections for these processes are discussed below. The total p-Be
interaction cross section at 8 GeV is 286 £+ 15 mb, implying that 17% of incident protons
traverse the target without interacting.

quantity Gaussian o

T 0.151 cm
Y 0.075 cm
0, 0.66 mrad
0y 0.40 mrad

Table 6.1: Beam profile parameters. Each quantity is drawn from a Gaussian of mean 0
and width o as indicated. The z and o, distributions are anticorrelated (p=—1), as are the
y and o, distributions. The values come from beam optics measurements.
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6.1.2 Hadron production

Each inelastic p-Be interaction has the potential to produce secondary hadrons. For each
type of hadron, the number of particles produced in a given inelastic interaction is chosen
from a Poisson distribution with mean
ffdz_tfd dQ
N, — M apaa p

T E— 6.1
" OINE (6.1)

where j:—df’}z is the doubly differential production cross section for the hadron and where oing

is the total p-Be inelastic cross section. This Poisson production is carried out separately
for 7+, K*, K% n, and p.

Sanford-Wang (7*, K°)

The differential cross sections used for 7, 7—, and K° production are described by the
Sanford-Wang (SW) [73] parametrization:

d*o e
= 1—
dpdaq ~ P (

C4
) exp [—03% — ¢ 0 (p — crpp cos®0) | (6.2)

bB — C9 B

where pg is the proton (“beam”) momentum, p is the outgoing meson momentum, and 6
is the outgoing meson direction relative to the proton direction. For 7% production, we fix
cg =1 GeV/e [T4].

Fits to available measurements of (ﬁ:—d‘fg are used to determine the SW parameters for
each meson. The following x? expression is minimized in each fit:

- N; — 1)2
X* =Y (Di — NywyFi) Vi ' (Dj — Ny Fy) + ) % , (6.3)
2,7 k

where i (or j) labels the individual cross section data points D;, k labels individual ex-
periments (with k(i) representing the experiment to which data point 7 belongs), F; is the
value of the SW function at the (p,#) coordinate of data point i, V™! is the inverse of the
covariance matrix for the data points, Ny is a fit parameter adjusting the normalization of
experiment k, and oj, is the normalization uncertainty quoted by experiment k.

Data from BNL E910 [75] and HARP (CERN) [76] are used for the 7" cross section
fit [74]. The E910 collaboration measured (f:—dffg at beam momenta of 6.4, 12.3, and 17.6
GeV/c and for outgoing 7t kinematics of 0.4 GeV /c < p < 5.6 GeV /c and 0.018 < 0 < 0.4.
HARP provided data at pg = 8.9 GeV/c (MiniBooNE’s beam momentum) over the pion
kinematic range of 0.75 GeV/c < p < 6.5 GeV/c and 0.030 < 6 < 0.21. These experiments
cover the ranges of pion production angles and momenta relevant for MiniBooNE, as shown
in Figure 6.1.

The parameters c3 and c5 exhibit strong correlations in the 7 fit [74]. Setting c3 =1
has negligible impact on the ability of the SW function to represent the data, and this is
done for the final #* fit. The minimum of y? changes by only 0.02 from the free-c3 fit.
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Figure 6.1: 77 momentum and angle distributions for those pions which produce neutrinos
in the MiniBooNE detector. The distributions for other mesons cover similar ranges.
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The 7t fit has x2/Ngor =298/165=1.8 and gives fitted experimental normalizations
of Nggio = 1.038 and Nuyarp = 0.974 (to be compared with the quoted normalization
uncertainties of ogg19 = 5% and ogarp = 4%). The high value of 1.8 for x?/Ng.f implies
that parameter errors, if derived from the Ay? surface, will likely be underestimated. Thus,
the input covariance matrix V is scaled by x2/Ngot = 1.8 before the correlated errors for
the {c,} are extracted.! Figure 6.2 shows the best-fit SW function along with HARP data.

HARP Ppe.m=8.9GeV
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Figure 6.2: 7" Sanford-Wang function (red curve) and HARP data (red points). The blue
curves represent the uncertainties assigned. To form these uncertainty “bands”, 1000 ran-
dom draws were chosen from the Gaussian p.d.f. implied by the 7x7 parameter covariance
matrix. The band indicates the RMS cross section so obtained at each (p, #). From Ref. [74].

For 7~ production, E910 (pg = 6.4,12.3 GeV/c) and HARP (pg = 8.9 GeV/c) data
are again used, but c3 stays a free parameter in the fit. For K° production, data from
E910 (pgp = 12.3,17.6 GeV/c) and from an experiment by Abe et al. at KEK (pp =
12.0 GeV/c) [78] are used. The Abe K° momentum range (4 GeV/c <p <6 GeV/c) makes
their #=0.061 and 6 =0.087 measurements most relevant, and higher angles are not in-
cluded in the fit [77]. Table 6.2 summarizes the extracted SW parameters.

I this “solution” to the poor x? is worrisome, note that the 7+ errors end up having little influence on
the v, — ve result thanks to the constraints of Chapters 10 and 11.
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C1 C2 C3 C4 Cs Ce Cr Cs C9
7t: 220.7 1.080 1 1.978 1.32  5.572 0.08678 9.686 1
w: 2372 0.8986 4.521 1.154 1.105 4.224 0.06613 9.961 1
K% 1513 1.975 4.084 0.9277 0.7306 4.362 0.04789 13.3 1.278

Table 6.2: Sanford-Wang parameters for 7+, 7=, and K° production [74] [77]. The
units are such that p and pp expressed in GeV/c yields a differential cross section in
(mbcGeV tsr™).

Feynman scaling (K)

For the fit to Kt production data, a parametrization was developed that obeys Feynman
scaling (FS) [79], whereby the invariant cross section F ‘c%; depends only on the transverse
momentum p; of the outgoing meson in the center-of-mass frame and on the Feynman
scaling parameter
CM
ll

TFp — W s (64)

D)

where pﬁjM is the longitudinal momentum of the meson in the center-of-mass frame and

pﬁjM’ma" is the maximum possible value of the same [80]. The FS parametrization, given by
e p? c

P exp (- a_ € _ copy — csp? 6.5

dpda ~ 5O P (—cslzr| crlpixp|® — copr — csp7) (6.5)

exhibits good agreement with KT data over a larger kinematic range than does the Sanford-
Wang parametrization.

Table 6.3 lists the data used in the K FS fit. Measurements outside of 1.2 GeV /e < p <
5.5 GeV/c were not included.? Table 6.4 gives the best-fit FS parameters, and Figure 6.3
shows the resulting function with data. As with the Sanford-Wang fits, the FS parameter
errors were extracted from the Ay? surface only after the input covariance matrix was scaled
by x2/Ngot = 2.28. Additionally, the resulting errors were doubled as a precaution against
normalization disagreements historically observed by neutrino experiments utilizing similar

hadron production fits. This latter increase has a minor impact on oscillation sensitivity.

Miscellany

e The cross sections for K—, n and p production are taken from the MARS15 hadron
Monte Carlo package [89].

e All meson production cross sections are artificially increased at high p, with subsequent
events weighted appropriately to nullify the enhancement, so that useful numbers of
neutrinos at high energy can be collected with reasonable CPU time.

*This is the approximate range of relevance for MiniBooNE (cf. Figure 6.1 for 77). Extending the fit
down to p = 0 GeV/c and up to p = 6 GeV/c adds 32 data points to the existing 119, yet it increases
the minimum x> by 337 units, perhaps suggesting that the FS function would have limited utility as an
extrapolation tool. Ref. [80] provides further detail.
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K* Production Data and Fit (Scaled to P,.., = 8.89 GeV)
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Figure 6.3: FS parametrization (solid curve), error bands (dashed curves), and data (points)
for the K+ production cross section. The data have been scaled to pg = 8.9 GeV/c by
preserving the FS quantities p; and zp.
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data set pB (GeV/c) p (GeV/c) 6 (degrees) oy

Abbott et al. [81] 14.6 2-8 20° —30°  15%
Aleshin et al. [82] 9.5 3 6.5 3.5° 10%
Allaby et al. [83] 19.2 316 0° -7 15%
Dekkers et al. [84] 18.8, 23.1 4—12 0°, 5° 20%
Eichten et al. [85] 24.0 4—18 0° —6° 15%
Vorontsov et al. [86] 10.1 1-45 3.5° ~00

Table 6.3: K1 production data for the FS fits [80]. Only those data satisfying 1.2 GeV /c <
p < 5.5 GeV/c were used. While the Vorontsov et al. paper reports 0,=25%, their measure-
ments show a large normalization offset relative to the others, so the Vorontsov normaliza-
tion information is not used (achieved by making oy large). These data obey Feynman scal-
ing fairly well (Figure 6.3). An additional data set, Lundy et al. [87] (pg = 13.4 GeV/c), was
anomalous in this regard and was excluded. Another, Marmer et al. [88] (pp = 12.3 GeV /¢),
had no measurements satisfying p > 1.2 GeV/c.

cl Co C3 C4 C5 Cg Ccr
K*t: 11.70 0.88 4.77 1.51 221 217 1.51

Table 6.4: Feynman scaling parameters for K* production [80]. The units are such that
E expressed in GeV and p and p; expressed in GeV/c yield a differential cross section in
(mbcGeV~tsr1).

6.1.3 Particle propagation
Inelastic scattering

The p-Be and p-Al inelastic cross sections — beryllium for the target, aluminum for the horn
— have been measured by Gachurin et al. [90] and Bobchenko et al. [91] for nucleon momenta
of 1 —9 GeV/c. These data are used in the simulation through the parametrization [92]

OINE = a1 + aop® + ozg,(logp)2 + aglogp . (6.6)

Parameter values are given in Table 6.5, and the functions are plotted along with data in

Figure 6.4. By isospin symmetry, the n and p cross sections are taken to be the same.
Inelastic cross sections for 7+-Be and 7%-Al are similarly parametrized using data from

the above Gachurin and Bobchenko references as well as from Ashery et al. [93] and Al-

a1 a2 asz a4 as
p-Be: -126.08 420.02 -6.802 115.47 -0.579
p-Al:  470.94 -0.259 48.86 -87.18 2.429

Table 6.5: Inelastic cross section parameters for Eq. (6.6). The units are such that p
expressed in GeV yields a cross section in mb.
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Figure 6.4: The inelastic cross section of Eq. (6.6) (solid line), its assigned uncertainty
(dashed lines), and the fitted data for p-Be (left) and p-Al (right). The vertical scales
are zero-suppressed. The disagreement (5 — 15%) below 2 GeV/c has negligible impact on
neutrino event rates. From Ref. [92].

lardyce et al. [94]. An empirical A scaling was applied to any data taken with non-Be/Al
targets. The final states for 7T inelastic interactions are determined using default GEANT4

routines.

(Quasi)-elastic scattering

The Glauber model [95] is used to calculate hadron-nucleus elastic (coherent) scattering
cross sections, following the example of Franco [96]. In the Glauber model, elastic scattering
off a nucleus is treated by summing the scattering amplitudes from each constituent nucleon.
The underlying hadron-nucleon cross sections come primarily from Particle Data Group
compilations [9].

Hadrons may also interact quasi-elastically (incoherently), scattering off individual nu-
cleons within the nuclear target. Compiled hadron-nucleon cross sections are again used,
now within a nuclear shadowing model [95]. Shadowing lowers the quasi-elastic cross section
from a simple AXopnycleon €xpectation. Ref. [92] has more.

6.1.4 Production weighting and decays

During propagation, and usually in the decay pipe, the produced mesons decay. Muons
from 7t —pty, lead to ve’s via ut—etv,0,. To enhance the Monte Carlo statistics for
this important flux component, each 7+ (or 7~) decay is repeated 20 times to produce
additional muons; subsequent daughter neutrinos are weighted by % to compensate.

The detector’s solid angle is small when viewed from the decay region, so it is advanta-

71



geous to decay all neutrino parents multiple times. The GEANT4 stage of the simulation
ends with a list of potential neutrino parents. This list is passed to the REDECAY utility which
decays each particle 1000 times, reporting any neutrino with a trajectory that crosses the
detector. REDECAY uses GEANT3 decay routines (e.g. GDECA2.F) modified to properly
handle matrix elements and particle polarizations.

6.2 Neutrino history

The nuance neutrino event generator (next chapter) uses neutrino energy spectra — not
individual neutrinos — from the beam simulation. Thus, neutrino parent information (e.g.,
the energy of the 7+ that produced a given v,,) is lost at the nuance stage of the Monte
Carlo chain, and this information must be reintroduced after neutrino interactions have
been generated. A history is assigned to each interaction based on the neutrino energy and
flavor. The histories come from a large database populated by the very same beam events
that fill the neutrino energy histograms used by nuance. Since the nuance-chosen neutrino
energy will not exactly match any of the entries in the database, a tolerance of 0.001 GeV
(vy) or 0.01 GeV (other) is allowed. The assigned history specifies the neutrino’s trajectory
through the detector, and the detector simulation respects this information when choosing
interaction vertices, thereby accounting for the small energy-angle correlations present in
the flux.

6.3 Resulting flux

Figure 6.5 shows the predicted fluxes of v,, v, ve, and 7, at the detector. The vertical
scale is the same in all four panels to facilitate comparisons. Table 6.6 gives a breakdown
of the integrated flux. Some comments:

e The plots do not reflect the event rate as a function of E, since the neutrino cross
section has not been applied.

e 0.6% of the flux is v, or 7. The dominant source is u* (from 71) decay. K+ decay
is a close second.

e 13% of the total v, and 7, flux comes from K9 decay.

e As expected, the 7, and v, fluxes have matching contributions from 7+ — p* — v.

6.4 Systematic uncertainties

The following summarizes the beam-related systematic uncertainties assessed in the v, — v,
analysis. Ref. [72] offers additional detail.

e Correlated errors on the SW parameters for 7, 7, and K° production are obtained
from the fits described above. Similarly, the FS fits provide K+ production errors.
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Figure 6.5: Flux of neutrinos at the detector, separated by flavor and production channel. The solid black curve in each panel shows
the total flux for that flavor. The production channels listed are all nucleon induced. Arrows denote decay. Neutrinos from mesons that
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total: 2.22x10° 7 v/cm?/POT

vy 93.6% Uy 5.86% ve: 0.52% 7e: 0.05%

7t 96.72% 77 89.74% | 7t —puT: 51.64% K°: 70.65%

K*t: 265% | ot —pt: 4.54% K*: 37.28% | 7= —p~: 19.33%

Kt =7t 0.26% K—: 0.51% K% 17.39% K= 4.01%

Ko —7t: 0.04% K%  0.44% . 2.16% 7 1.26%

K% 003% | KO—=7n7: 024% | Kt —=pu™: 069% | K- —pu~: 0.07%

7 —p: 0.01% | KT—ut: 0.06% other: 0.84% other: 4.62%
other: 0.30% | K~ —7—: 0.03%
other: 4.43%

Table 6.6: The fraction of the total flux due to each neutrino type, broken down by pro-
duction channel. The nucleons that induce these channels are not indicated in the labeling.
Arrows denote decay. The “other” category includes (and is dominated by) channels in-
volving meson production by other mesons (rather than by nucleons).

e Errors on the inelastic, quasi-elastic, and total cross sections for nucleon-nucleus and
pion-nucleus interactions come from the fits used to establish the parametrizations.

e The horn current is assigned a 1 kA uncertainty (the precision with which it is mea-
sured) [97].

e The skin depth of the horn at the frequency of the sinusoidal current pulse is § =
1.4 mm. Flux histograms are obtained for this skin depth as well as for § = 0 mm.
The flux difference between the two cases (each flavor treated separately) is taken as

a one standard deviation flux uncertainty due to skin depth.

Chapter 12 explores how these uncertainties impact the oscillation result.
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Chapter 7

Neutrino cross section model

We review neutrino cross sections relevant in MiniBooNE and their implementations in
version 3 of nuance (our Monte Carlo event generator). Ref. [70] and its citations offer
additional detail on nuance. Ref. [98] presents some comparisons between available data

and nuance predictions.

7.1 Charged current quasi-elastic scattering

As Figure 7.1 shows, charged current quasi-elastic (CC QE) scattering
v+n—1"+p (7.1)

is the dominant charged current process for MiniBooNE (E, ~ 0.1 — 2 GeV). Its cross
section can be written! [100]

do M2G%V2,
dQ? 8 E?2

2
A@ @Y o@ T a
where M is the target nucleon mass (taking M~M,~M,), —Q%=¢? is the square of the
four-momentum transfer, G is Fermi’s constant, V4 is the relevant CKM matrix element,
E, is the incident neutrino energy in the neutron rest frame, (s — u) = 4ME, — Q* — m?
involves the usual Mandelstam variables [102], m is the mass of the outgoing lepton [, the
(—)+ sign corresponds to (anti)neutrino scattering, and the Q?-dependent coefficients A,

laveraging over spins and assuming a conserved vector current (CVC) and the absence of second-class
currents [99]
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Figure 7.1: Charged current neutrino cross sections versus energy. Shown are total (solid),
deep inelastic scattering (dotted), quasi-elastic (dashed), and single pion production (dot-
dashed) cross sections. From Ref. [101].

B, and C are given by

A= LA}LQQQ 1+7)F3 - (1-7)F2+7(1+7)F2 + 4rF\ F
m2
4M2 [Fl (FA+2FP)2_4(1+T)FF2’]
Q2
B = WFA(Fl + Fy)

. 2
with 7 = M2

For a conserved vector current, the vector form factors F; and F5 can be related to the
electromagnetic form factors. These, in turn, have a dipole dependence on Q? if the radial
distribution of charge in the nucleus is exponential, giving [100]:

Fi(Qy) = 1Tt (7.3)
(17 (1+ )
R(Q?) = ! 7 - (7.4)

1+7) (1+ %)

Here, n = (5—; - 1) — (ﬁ—; — O) = 3.706 is the difference between the proton and neu-

76



tron anomalous magnetic moments [9], and the parameter My = 0.84 GeV is determined
from electron scattering data [103]. Although the dipole assumption is common, nuance
was upgraded in MiniBooNE to use non-dipole vector form factors developed from recent
fits [104].

Fp is related to F4 through [100]

2M?

T m2 QQFA(QZ) ’ (7.5)

Fp(Q?)

where m is the pion mass. Nuance uses a dipole form for F4:

F4(0
FA(QQ) = ( 2) 2 (7.6)
8
M3
where F4(0) = —1.27 is determined from neutron decay [9]. The single remaining free

parameter M4 is set using our neutrino data (§10.2.1).

Nuclear effects

If the target nucleon is bound, three important conditions modify the above cross section:
1. The target nucleon is not at rest (Fermi motion).
2. The target nucleon has binding energy.

3. The outgoing nucleon must be in a state not already occupied by a spectator nucleon
(Pauli blocking).

Item (1) causes an unavoidable smearing in the reconstruction of the neutrino energy. Items
(2) and (3) suppress low Q? interactions.

Nuance uses the relativistic Fermi gas (RFG) model of Smith and Moniz [105] to incor-
porate these effects. In the RFG: target nucleons are assumed to have a uniform momentum
density in the rest frame of the nucleus up to a cutoff Fermi momentum kr = 220 MeV/c
(Item 1 above); if possible, the outgoing nucleon’s energy is reduced by a binding energy
E, = 34 MeV, else the reaction is kinematically forbidden (Item 2); and, the momentum of
the final state nucleon must be greater than the Fermi momentum (Item 3). These condi-
tions are imposed by integrating, with respect to the initial nucleon momentum k, the free
nucleon cross section multiplied by a factor proportional to

O(kr — [k|) ©(k + q — kr) d(e(k) —e(k +q) — Ep +w) , (7.7)

where q = p,—p; is the 3-momentum transfer, w = E, — E) is the energy transfer, and e(k) =
(k|2 + M2)2. The first © function establishes the Fermi sea of target nucleons, the second
enforces Pauli blocking, and the § function enforces energy conservation.? In nuance, Pauli

2For MiniBooNE’s Z=N=6 carbon target, a single kr describes both the neutron and proton Fermi seas.
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low

blocking is equivalently enforced via the lower bound of integration Eloy<4/kZ + M2,
which we modify in MiniBooNE by a scale factor k =1.024,

EIOW:H(\/k%V+M2—w+Eb) ; (78)

the motivation and tuning of which is discussed in §10.2.1. In the Smith and Moniz RFG
model, k=1.

The need to constrain

The above cross section formalism is commonly used, but it is not particularly well tested
in MiniBooNE’s region of interest (Figure 7.2). Also, at Q% < 0.2 GeV? where nuclear ef-
fects are important, the RFG model strains to match observed kinematic distributions [106].
Fortunately, MiniBooNE has a large sample of v, CC QE events that helps constrain (Chap-
ter 10) the v, CC QE cross section estimates for the v, — v, analysis.

CC v, Quasi—Elastic Cross Section

N L
NE - ® Serpukov, Belikov, Z. Phys. A320, 625 (1985), Al
Q 2 — 4 BNL, Baker, Phys. Rev. D23, 2499 (1981), D,
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Figure 7.2: Nuance v2 prediction for the v, CC QE cross section along with experimental
data. From Ref. [107].
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Reconstructing E,

The (approximately) two-body CC QE process allows one to reconstruct the incident neu-
trino energy from knowledge of the outgoing lepton kinematics and the incoming neutrino
direction, assuming a stationary unbound target neutron:

2M, By + M2 — M2 — M}

Erec —
v 2(M, —E;+p;-u,)

(7.9)

where (Fj,p;) is the reconstructed lepton 4-momentum; M, py are the masses of the
neutron, proton, and lepton; and where u, is the incident neutrino direction. EJ°° appears
throughout later chapters.

7.2 Resonant processes

The excitation and subsequent decay of baryon resonances is the primary mechanism for «
production, with the A(1232) resonance dominant and N (1440) secondary. Nuance models
all known non-strange resonances with invariant mass below 2 GeV using the harmonic
oscillator quark wave function approach described by Rein and Sehgal [108], updated to
reflect modern knowledge of the mass spectrum. The nucleon form factors for resonant
scattering are taken to be identical to those for quasi-elastic scattering, though with different
values for M4, and nuclear effects are handled with an RFG prescription. For the latter,
Pauli exclusion is enforced for the decay nucleon (e.g., the neutron in A* — nz™) rather
than for the resonant baryon. Figure 7.3 shows the predicted cross section for charged
current 7+ production along with available experimental data.

Radiative decay

The electromagnetic decay A — N+ occurs with a branching ratio of 0.52%—0.60%, inferred
from pion photoproduction on nuclei [9]. Though relatively rare, the N+ final state is all
but indistinguishable from the Ne final state sought in the oscillation search. Further, the
branching ratio is comparable to the LSND oscillation probability of 0.26% [50]. Thus,
radiative A decay is an important background in the analysis. We revisit it in Chapter 11
where we use measurements of 7° production to adjust the nuance prediction for A — N+.

7.3 Neutral current 7’ production

As Figure 7.4 indicates, cross section measurements for neutral current (NC) 7° production
at MiniBooNE energies are sparse. Chapter 11 describes how we isolate a high purity sample
of these events to measure their production rate directly, thereby taking the pressure off
the nuance model and available data.
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CC Single Pion Production
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Figure 7.3: CC m production, data and simulation. From Ref. [107].

Coherent 7° production

The coherent reaction
v+C—ov+C+n° (7.10)

is modeled in nuance following Ref. [111]. However, there is little experimental data for
coherent 7° production below 2 GeV, and calculations suggest that nuclear effects can
significantly reduce the cross section [112] [113]. The forward-peaked angular distribution

0

of coherently produced 7%’s allows us to use our 7’ event sample to tune the rate of this

reaction in nuance (Chapter 11).

7.4 Final state interactions

A particle produced within a nucleus in a neutrino interaction may interact as it exits
the nucleus, possibly modifying the final state. For example, a 77 may undergo charge

0

exchange with a neutron as it exits, appearing in the detector as a n°. A proton may

induce the production of a pion in a collision with another nucleon. Nuance predicts rates
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NC Single Pion Production
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Figure 7.4: Measurements of the resonant 7° production cross section and the free nucleon
nuance prediction [109] [110]. No measurements exist below E, = 2 GeV.

of ~20% for pion absorption and ~10% for charge exchange. Proton and neutron final state
interactions lead to pions in 1 — 2% of originally pion-free events.

To simulate these effects, nuance tracks final state hadrons through the nuclear medium
in 0.2 fm steps. Compiled 7-N and N-N cross sections provide the interaction probabilities.
The nucleon spatial distribution in nuance was updated for MiniBooNE using Ref. [114].
Additionally, roughly half of events include few-MeV de-excitation photons which are in-
significant perturbations.

7.5 Miscellany

The remaining processes implemented in nuance play minor roles in the v, — v, analysis.

e NC elastic scattering (VN — vN) is treated in analogy with CC QE scattering (bare
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cross section embedded in an RFG model).
e Neutrino-electron scattering (ve™ —ve™, Uee”™ — D,u~, etc.) is included at tree level.
e Deep inelastic scattering (DIS) and various multi-m channels are modeled.

All nuance calculations are performed under the assumption of a CHs target. Reaction
rates are scaled with the density of the target material (e.g., steel). This simplification has
negligible effect on the analysis.

7.6 Systematic uncertainties
The systematic uncertainties assessed in the cross section simulation are as follows.

e Uncertainties in M4 and s come from the fits described in Chapter 10. These param-
eters affect the normalization and Q? dependence of the quasi-elastic cross section.
An additional 10% normalization uncertainty is also applied [115].

e Uncertainties in single- and multi-pion production come from available data at Mini-
BooNE energies [116]. These uncertainties are assessed using the axial vector masses
in nuance (M7} and M}™). See Table 7.1 for values.

e Uncertainties in final state interactions enter through the absorption and charge ex-
change cross sections used in nuance. These uncertainties have the same effect on
the analysis — namely, making the level of 7+ background in the v, CC QE sample
uncertain — as do uncertainties in pion propagation through the detector (§8.2). For
simplicity, these are combined here, giving a total absorption (charge exchange) cross
section uncertainty of 50% (35%).

e The parameter As, which governs the strange quark contribution to neutral current
scattering, is set with external data: As=0.0+0.1 [107].

e Deep inelastic scattering is given a 25% uncertainty [116]. Neither this nor the previous
item plays an important role in the analysis.

MJ®  (1.15£0.07) GeV
M7 (1.1£0.275) GeV
ME™  (13£0.5) GeV

MS" (1.03 +£0.275) GeV

Table 7.1: Axial vector masses in nuance. MSE =M, and Mﬁ"h are established in Chap-
ters 10 and 11; the others come from available pion production data [116]. The Mg‘)h and
M7 uncertainties are fully correlated. (See text.)
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e Radiative A decay has a 9% uncertainty (§11.2.3) applied on top of the already as-
sessed A production uncertainty.

Since we will use our v, sample to constrain the v, quasi-elastic cross section (Chapter 10),
uncertainties in the v, /v, cross section ratio, which are driven by nuclear effects, are also
relevant. This ratio was examined under nuclear model variations, including superscaling
and spectral function calculations, to establish an energy-dependent v, /v, uncertainty that
is assessed on the v, quasi-elastic cross section. This contributes negligible error above
E, ~400 MeV and reaches 10% at E, ~200 MeV [115]. Finally, nucleon form factor vari-
ations induce small changes in the energy dependence of the quasi-elastic cross section,
motivating an additional energy-dependent uncertainty assessed on quasi-elastic events.
The resulting uncertainty in the ratio oqr(£,=2.5 GeV)/oqr(E,=0.3 GeV) is 13%. See
Ref. [115] for more.

Neutral current 7%’s are discussed in Chapter 11 where we measure their momentum

0

spectrum. The effects of the above uncertainties on 7 momenta are removed during error

assessment while maintaining effects on other 7 distributions (in particular, the angular

coh

distribution). Additionally, the coherent 7° production rate, controlled with M$°", is taken
to be fully correlated with M7 so that the resonant/coherent 7° ratio stays fixed at the

observed value (§11.2.2).
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Chapter 8
Detector simulation

We use a GEANT3-based [71] Monte Carlo simulation of the detector up through photo-
electron production. The PMT response, electronics, and DAQ are modeled in separate
code. These simulation components are described below.

8.1 Geometry definition

The MiniBooNE tank is modeled as a spherical shell of iron capped with the “tophat”
cylindrical hatch. This iron shell sits in an air-filled cylindrical vault which sits in a larger
cylinder of dirt. Atop this larger cylinder is a conical frustum of dirt representing the
overburden. The cylindrical electronics room sits inside the overburden and contains the
muon tracker. Figure 8.1 shows these geometry components.

The tank volume is filled with oil which in turn contains the following.!

e aluminum optical barrier

four spherical laser flasks

e seven scintillator cubes and the single “coffee can” light shield

lat pipes

main PMTSs

e veto PMTs

The PMT globes are created by joining two partial spheres symmetrically at the globe’s
equatorial plane such that the final globe diameter and height are correct. Below each globe
is a cylinder and thin disc representing the PMT neck and the base electronics.

Default GEANT3 material definitions are used when available (e.g., air). Dirt is modeled
as a silicon-oxygen-aluminum mixture with relative atomic contributions 20-65-15 and with
density pgirt = 2.15 g/cm3. The oil is modeled as CHy with density poy = 0.855 g/cm? and
with customized optical properties.

!See Chapter 3 for definitions.
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Figure 8.1: The GEANT3 geometry for the dirt and overburden (thick-lined cylinder and
conical frustum), the electronics room and vault (thin-lined cylinders), the detector tank
and tophat (sphere and small cylinder), and the muon tracker strips (small planes above
tophat).

8.2 Particle propagation

Standard GEANT3 particle propagation and decay routines are used except as follows.

Decay matrix elements

The GEANTS decay routines do not include matrix elements. Custom routines are used
to correct this for two relevant decays: (1) 7°—~yetTe™ (B.R.=1.2%), which is relevant as a
Ve background, and (2) p—evv, which is relevant as a muon tag and an energy calibration
source.

p~ capture
A stopped p~ in mineral oil may be captured by carbon? via
p~+C =y, +B*. (8.1)

The p~ lifetime in carbon, 7¢ = 2026.3 + 1.5 ns [118], is thus smaller than the vacuum
lifetime of 7yac. = 2197.03 £ 0.04 ns [9]. These lifetimes imply a branching ratio for capture

7C

B.R.(capture) =1 — = 0.0777 £ 0.0007 . (8.2)

Tvac.

ZA p~ that enters a hydrogen orbital upon stopping is quickly transfered to a carbon orbital, and thus
4~ capture on hydrogen is negligible [117].
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The Monte Carlo simulation includes p~ capture and the associated reduction in the p~
lifetime. Additionally, the de-excitation of the induced B* state is modeled, although the
photons and neutrons emitted are rarely above the detection threshold, making p~ capture
essentially invisible.

Hadronic cross sections

The GCALOR [119] hadronic interaction package is used in lieu of the default GFLUKA
package. The relevant differences are that

e 71 charge exchange (CX) occurs too often in GFLUKA;
e 7t absorption (ABS) is nearly absent in GFLUKA.

These statements are quantified in Table 8.1. Uncertainties in these cross sections, which
affect 7t backgrounds in the v, CC QE sample (Chapter 10) but do little else, are handled
through the nuance FSI model (§7.6).

8.3 Optical photons

8.3.1 Production

Charged particles propagating through the oil produce optical photons which are individu-
ally tracked in the Monte Carlo. The light is produced via three mechanisms.

1. Cherenkov radiation. This familiar phenomenon is implemented in GEANT3 as de-
scribed in Ref. [120]. The requisite index of refraction is discussed below. A scale fac-
tor fch=1.106 multiplies the Cherenkov production, although this should be thought
of as an adjustment to propagation and detection efficiencies rather than as a scaling
of the Cherenkov production itself.

2. Scintillation. Energy deposited in mineral oil by charged particles leads to scintil-
lation light. Scintillation photons are created in the simulation according to

dNgi 31.64 MeV !
dE 145 (a8 g (1de)? ®.3)
B i ar ) T2 (o e

where the % dependence handles saturation of the scintillator (Birks’ law [121]) and
where the coefficients are given by

By = 0.014 gMeV 'cm 2 (8.4)
By, = 0.0g>’MeV2cm™. (8.5)

Bs, though zero, is included so that it can be varied as part of the systematic er-
ror assessment. Scintillation emission is delayed exponentially with a time constant
7=34 ns. Wavelengths are discussed in §8.3.2.
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GFLUKA GCALOR Ashery et al.
ocx: 11846 mb  59+4 mb 45+23 mb
OABS: <3 mb 132+7 mb  157+37 mb

Table 8.1: Comparisons between GFLUKA, GCALOR, and measured 7+ hadronic cross
sections at KE; = 205 MeV. The experimental data come from Ref. [122].

3. UV fluorescence. Photons with wavelengths below A=250 nm are not propagated in
the simulation. (The PMTs are insensitive below A=~280 nm.) However, a UV photon
can induce fluorescence (see below), possibly resulting in a photon with a detectable
wavelength. This possibility is accounted for by the creation of “UV fluorescence”
photons, identical in spectrum and time constant to scintillation light, to represent the
fluorescence daughters of the otherwise ignored UV light. Since Cherenkov radiation
is the only source of A<250 nm light, these photons are generated in each Monte Carlo
step in proportion to Cherenkov production:

dNuvf = fuvf dNCh (86)

with f,,+=0.074. Since attenuation lengths are <1 cm at UV wavelengths, and because
1 cm is much smaller than the spatial scales relevant in the detector, UV fluorescence
photons are produced along the track (rather than, more realistically, a short distance
away).

8.3.2 Propagation

Each photon is stepped through the detector until it is absorbed. The absorption may
occur within the oil, on various surfaces, or at a PMT photocathode, possibly creating a
photoelectron. Figure 8.2 shows the rates of some of the relevant transport processes as a
function of wavelength.

Scattering

Local variation in the index of refraction of a fluid due to thermal fluctuations leads to pho-
ton scattering. A complete description of the phenomenon includes the familiar Rayleigh
scattering contribution (which assumes certain symmetries about the density fluctuations)
and additional “depolarization” scattering components which stem from anisotropic fluc-
tuations [123] [124]. We measured the rates and angular distributions of these scattering
components at A=442 nm and A=532 nm using a Brookhaven BIS-200 goniometer® under
four permutations of incoming and outgoing polarization [125]. To obtain absolute scatter-
ing rates, the intensity of scattered light was calibrated using suspensions of NIST-certified

3We thank Wesley Kopacka for arranging use of the apparatus.
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50 nm polystyrene spheres*. Suspensions were prepared at various dilutions, and the Mie
scattering rates were calculated to provide reference values. Wavelength extrapolation is
carried out with a theoretically motivated A\* rate dependence. Figure 8.3 shows example
angle and rate measurements.

Raman scattering was separately measured [126]. It contributes 5% to the total scatter-
ing rate and induces a small wavenumber shift of Av=2890 cm~!. All of these scattering

mechanisms are included in the simulation.

Fluorescence

Short wavelength photons can excite molecular states that decay to produce longer wave-
length photons. A fluorescence analysis of Marcol 7 oil performed by Dmitri Toptygin
(Johns Hopkins University) identified four distinct fluors, each with its own emission spec-
trum, excitation spectrum, and emission time constant, as shown in Figure 8.4. These fluors
are simulated [127].

Returning to scintillation: we assume that scintillation light is produced by these same
fluors. The relative contribution from each fluor is set by comparing data and Monte Carlo
predictions for Michel electron and neutral current elastic scattering (proton) events. The
data prefer a model in which scintillation comes from fluor 4 only (as labeled in Figure 8.4).

Absorption in oil

The scattering and fluorescence rates are subtracted from the total extinction rate [126] to
obtain a residual that is attributed to absorption.

Reflections

Within the main detector region, most surfaces are modeled as perfectly absorbing. The
two exceptions are (1) the lower halves of the PMT globes, which are silvered in reality and
which produce perfect specular® reflections in the simulation, and (2) the inner surface of
the optical barrier, the reflection probability of which was measured (in air) to be ~2.5%.
We set it to 5% in the simulation to account for an additional ~2.5% reflection probability
expected from the front faces of the PMTs, which cover 10% of the optical barrier’s surface.
(The PMT faces themselves are modeled as perfectly absorbing.)

In the veto region, the white steel tank and white optical barrier surface had their
wavelength-dependent albedos measured in air. These albedos are used in the simulation,
though scaled by a factor fapedo = 0.905 tuned by comparing predicted and observed veto
hit multiplicities for through-going muons. Diffuse reflections (polish=0) are assumed for
these surfaces. Also in the veto, the lower PMT globes are perfect specular reflectors and
the PMT necks are perfect diffuse reflectors (to represent the white mountings that enclose
them).

4Duke Scientific
SGEANT “polish” parameter set to unity
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Figure 8.3: (Top) Angular dependence of the scattering rate of 442 nm light in planes per-
pendicular (red, flat) and parallel (blue, parabolic) to the incident polarization. (Bottom)
Observed count rates for the “nanosphere” calibration suspensions (black), Marcol 7 oil
(red), and Marcol 7 isotropic-only Rayleigh component (blue) plotted against the expected
Mie scattering rate (nanospheres) or the expected isotropic-only Rayleigh rate (Marcol 7).
The Marcol 7 “Iso” component is extracted from the total using the angular distributions
above. The “Iso” point should (and does) lie on the nanosphere calibration curve. From
Ref. [125].
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Figure 8.4: Fluorescence in Marcol 7 mineral oil. (Top) Relative excitation probabilities for
the four principal fluors. (Bottom) Corresponding emission curves (arbitrarily normalized).
Emission time constants are listed in the legend.
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Index of refraction

The index of refraction of the oil was measured using an Abbé refractometer® [128]. The
data are well described by

n(\,T) = [nD—I—B (i !

w5z |i-ar - (8.7)

where ) is the wavelength and 7' is the oil temperature. Parameter values are given in
Table 8.2. The consequent phase velocity ¢/n and dispersion relation n(w), with w = %,

are used to calculate group velocities relevant for photon propagation:

_ Up
S l4edm

n dw

Vg (8.8)

At A=400 nm and T' = 17.5 °C, v,=(19.50 £ 0.02) cm/ns.

8.3.3 Detection

The efficiency for photoelectron creation in the PMTs is shown in Figure 8.5. The curve
comes from Hamamatsu measurements adjusted to account for reflections at the air/glass
interface (which becomes an oil/glass interface in MiniBooNE). The R1408 efficiency is 0.83
times that of the R5912 efficiency, a ratio measured in the detector with Michel electron
events. To minimize CPU time spent tracking photons that are destined to be undetected,
the quantum efficiency is scaled in the Monte Carlo so that the peak efficiency is unity; the
original peak efficiency of 22% is assessed at photon production.

The dependence of the PMT efficiency on the photon incident angle was measured
using a sub-nanosecond pulsed LED light source’ directed at PMTs mounted on a rotatable
support structure submerged in an oil bath [129]. The purely geometric contribution to the
angular efficiency is removed and the residual gets applied to each incident photon in the

simulation.®

np 1.4684 + 0.0002
B (4240 £ 157) nm?

B (3.66 £0.04)x10~% (°C)~!
AD 589.3 nm

Ty 20.0°C

Table 8.2: Parameters describing the index of refraction of MiniBooNE’s mineral oil. The
first three are the actual measured values. Ap and Tj are reference quantities [128].

5Xintian Fine Optical Instrument Corp., Model WY1A

"PicoQuant PLS 450.

8We use a simplified PMT geometry in the code, so the geometric contribution is not entirely removed
here. Rather, the angular dependence is set such that it conspires with the actual simulated PMT shape to
yield the correct efficiencies.
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Figure 8.5: R5912 PMT quantum efficiency in oil.

8.4 PMT response

Time

An electron cascade induced in a PMT by a photoelectron (PE) travels down the dynode
stack in a time interval that varies from one PE to the next. This transit time spread is
the leading contribution to the PMT timing resolutions. Photoelectrons can also induce
late-pulses (~5%) and pre-pulses (see below), in which the anode signal appears later or
earlier than expected. Figure 8.6 shows these and other features.

The timing distributions for several PMTs were measured with the LED setup of §8.3.3.
Figure 8.7 shows observed distributions overlayed with parametrizations that, with the
following modifications, are used in the simulation to smear the times of PMT hits.

e The width of the prompt peak is tuned using Michel electron events.

e Due to differences in applied high voltage, the time gap between the prompt peak
and the late-pulse “peak” varies from channel to channel. This time gap is measured
for each main PMT using laser flask events, and the time response is adjusted in the

simulation to reproduce these channel-to-channel variations.

e Pre-pulse timing features are included. Region B of Figure 4.12 reveals the existence
of an early timing peak near ¢ = —18 ns that contains hits with lower charges than
those in the prompt peak (Region C). Not indicated in the figure is another low-charge
region around t = —2 ns. Pre-pulsing is simulated by shifting the time and reducing
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Figure 8.6: The time profile of R1408 PMT hits in low intensity laser flask events. Note the
logarithmic vertical scale (c¢f. Figure 4.10). The prompt peak has been placed at ¢ = 0 ns.

the charge of some fraction of photoelectrons. The —18 ns and —2 ns features are
created using time shifts of those sizes, charge scalings of N%, and per-PE rates of

1.3x10~* (former) and 0.08 (latter).

In addition to these smearing effects, each photoelectron’s time is shifted by that channel’s
Atofiset, as defined in §4.1.

Charge

The anode charge for each PE is drawn from a p.d.f. obtained from prompt laser flask
PMT hits. R1408 and R5912 PMTs have different charge responses as Figure 8.8 indi-
cates. The low-charge region of each distribution is artificially reduced to remove pre-pulse

contamination that gets reintroduced by the Monte Carlo code.

8.5 Digitization

(Familiarity with §3.5 is assumed here.) Once each PE has acquired its smeared time and
charge, a triangular anode pulse is created. The pulse has a width motivated by oscilloscope
traces and an area driven by the charge drawn for the PE. The pulse shape also controls
the phenomenon of time slewing. To achieve agreement between predicted and observed
slew rates in cube-stopping cosmic muons, the pulse shape model was extended as follows.
(R5912 values are in parentheses.) For PEs with drawn charge above Q¢,=0.87 (1.2), the
triangle’s width at baseline is chosen from Gaussian(39.0 ns, 4.2 ns) (Gaussian(33.0 ns,
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Figure 8.7: Measured PMT timing profiles. The parametrizations shown (black curves) are
modified as described in the text to provide time smearing in the simulation. These mea-
surements could not detect pre-pulsing, which gives charges typically below the apparatus’s
threshold.
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Figure 8.8: PMT charge response. The distributions indicated with the solid lines have
means of 1 PE. For the older generation R1408 PMTs, a long tail in the charge distribution
(reaching beyond 10 PE) balances the fact that the peak sits below 1 PE. The dotted lines
represent the low-charge reduction mentioned in the text. Pre-pulsing restores this carved
out portion.

3.6 ns) ). The pulse height is set in proportion to the PE’s charge and in inverse proportion
to the chosen width. Below Q¢,, the Gaussian mean varies linearly toward a Q=0 value of
14.0 ns (14.0 ns). The Gaussian RMS scales along with the mean, bottoming out at 1.51 ns
(1.53 ns).

Despite this complexity, one is left with the simple situation of having a collection of
triangular anode pulses of various sizes, one for each photoelectron. These pulses are used
for two purposes:

1. A train of Q_ADC digitizations is assembled by scaling the charge reference curve V;]ref
(84.2.3) by the chosen charge for each PE and by subsequently summing the results
from all PEs on a channel.

2. Separately, all anode pulses on a channel are summed. The resulting complete anode
signal is discriminated at the 0.1 PE level to initiate time ramps from which a train
of T_ADC digitizations is formed.

This description requires two final modifications:

e Residual data/simulation disagreement in time slewing motivates an additional em-
pirical slewing adjustment. The time of each PE is shifted by a small amount that
depends on the total charge in the vicinity (“vicinity”=+60 ns).
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e High charge PMT hits exhibit nonlinear response. Figure 8.9 shows the nonlinearity
mapping obtained from laser flask data and applied in the simulation.

Various non-PMT channels (beam trigger signal, muon tracker strips, etc.) are also given
appropriate activity. The entire event is then shifted in time to mimic the 1.6 ys neutrino
beam spill. Finally, the trains of {Q_ADCn} and {T_ADCn} digitizations are sent through a
zero-suppression, quad-defining algorithm functionally identical to that in the actual DAQ

software.
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Figure 8.9: Nonlinear charge behavior. The solid curves show the mappings used to adjust
hit charges in the simulation. These mappings were created using low- and high-intensity
laser flask runs in which the laser’s intensity was throttled both via the injection current
and through the use of neutral density filters. The extraction of these curves is sensitive to
the assumed discriminator threshold values; the consequent uncertainty is indicated by the
dashed curves (£10).

8.6 Beam-off activity

As described in §3.7, “random” triggers are initiated at 2.01 Hz to record beam-uncorrelated
activity in the detector, coming primarily from cosmic ray muons, their decay electrons, and
PMT dark noise. To account for this activity in the simulation, PMT hits from the random
triggers are merged with hits from the Monte Carlo events. The merging routine handles
(rare) hit collisions via a quad-creating procedure akin to that used in the Monte Carlo
itself for combining nearby PEs on a single channel.

97



8.7 Tuning and systematic uncertainties

The development of the detector simulation, and in particular its optical photon model,
was guided by the measurements mentioned above and by comparisons of Monte Carlo
predictions with detector data. For a handful of parameters, the laboratory measurements
provide our best information. For most, the MiniBooNE detector provides the stronger
(and sometimes only) parameter constraints.

A parameter that is more or less unrelated to any other can be adjusted by hand
without difficulty. For example, the relative efficiencies of old and new PMTs can be set
by counting hits in Michel electron events. Some observables, however, are affected by
many parameters simultaneously. Reconstructed Michel electron energies, for instance, are
governed by the Cherenkov yield, the extinction length, scattering rates, fluorescence rates,
scintillation production, and more. One cannot arbitrarily adjust these to achieve Michel
energy agreement since other observables — say, timing distributions — depend on them as
well.

A careful by-hand approach did, over time, lead to reasonable default parameters. How-
ever, assigning correlated uncertainties to these is a more complex task for which the fol-
lowing procedure was developed.

Reducing parameter space

We begin by assigning initial parameter errors using the laboratory measurements alone —
no detector data. Parameters for which no measurements are available are given enormous
errors. For concreteness, the thirty-five parameters in play are:

e extinction length (5)

e Rayleigh/Raman scattering (3)

e refractive index (3)

e PMT angular efficiency (2)

e scintillation yield from each fluor (4)
e fluorescence yield from each fluor (4)
e UV fluorescence yield from each fluor (4)
e time constant of each fluor (4)

e Cherenkov scale factor (1)

o reflections (2)

e Birks’ law coefficients (2)

e old/new PMT relative efficiency (1)
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Other parameters exist in the code but do not affect the distributions below.

Our initial knowledge of these parameters can be cast as a multivariate Gaussian p.d.f.
with mean § and covariance matrix S. Using this p.d.f., we draw M= ((3000) random
Monte Carlo parameter sets {s(l), s@ .. sM )}, and we generate a sample of Michel elec-
trons for each parameter set. Reconstructed energy distributions from four of these M
samples are shown in the left column of Figure 8.10. The data/simulation agreement in
these distribution varies from good to awful, indicating that our data can indeed constrain
the model further.

For a perfect simulation, the x? expectation from these comparisons is Ngo¢ = (number of
bins compared). An imperfect parameter set s(m) will deviate from this, and Ax? = x2— Nyt
tells us how likely this parameter set is, relative to others, according to the data:

p = exp (——Ax2> . (8.9)
The relative likelihood of obtaining parameter set s(™) in the first place is
Lism) _§)Tg—1(stm _ g
W = exp _5(5 —8)' ST (s'"™ —-8§) ) . (8.10)

If our new information is more constraining than our old (p < w), we would like to adjust the
relative likelihood of parameter set s from w to p. That is, we wish to take w — min(w, p),
which we do by assigning an additional weight of

7 = min (1, 3) . (8.11)
w
We construct from the M parameter sets a new p.d.f., with mean

(m)
g = Zm S 8.12
S (8.12)

and covariance matrix

,_ S (o7 - 8) (4 - %)
v % Zm m .

Using this new p.d.f., we repeat the above procedure with increased sample statistics and/or
9

(8.13)

new test distributions (energy, timing, etc.) in the x? calculation.
About twenty iterations are carried out. We require ), 7, > 300 after each iteration so
that the new p.d.f. can be determined adequately. This sum can be increased by generating

more random parameter sets or by comparing fewer distributions.

9Parameter bounds complicate this picture considerably, as the calculated means get biased away from
the boundaries. This bias is compounded in each iteration. We recover the intended behavior by using a
wholly different method for choosing the random parameter sets. Descriptions and toy Monte Carlo studies
of all of this can be found in Ref. [130].
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The right column of Figure 8.10 shows four reconstructed energy distributions drawn
from a well-iterated parameter p.d.f. The discrepancies are noticeably reduced. Figure 8.11
shows a similar before/after comparison for a portion of the old PMT time distribution.
Figure 8.12 shows several distributions at once, using a band to represent the spread of the
M individual Monte Carlo histograms. The reduction in uncertainty is striking.

This procedure was performed using the following Michel electron observables:

e reconstructed energy spectrum
e late time histograms (50 ns to 120 ns after prompt) for old and new PMTs
e prompt and late angular profiles (cos 0)

e average reconstructed energy for inward-pointing, outward-pointing, and sideways-
pointing electrons as a function of reconstructed radius.

A final timing distribution was built from neutral current elastic scattering events in or-
der to disentangle scintillation and UV fluorescence light, which in our model cannot be
distinguished with the highly relativistic Michel electrons.

Other parameters

e Prompt timing. The PMT prompt time response was not included above. Rather,
the prompt timing parametrization established with laboratory measurements and
adjusted with Michel electrons (§8.4) is given uncertainties based on residual sub-
nanosecond discrepancies in the Michel electron and cube-stopping muon time distri-
butions.

e Particle propagation. The cross section for pair production by high energy photons
is given a 3% uncertainty based on limitations in the GEANT3 parametrization and its
underlying data. Similar uncertainties are assigned to the bremsstrahlung (5%) and
Compton scattering (5%) cross sections and to the average muon multiple scattering
angle (4%).

¢ GCALOR carbon excitation energy. The energy given to low-energy gammas
produced by the GCALOR nuclear excitation routines is given an uncertainty of 60%
motivated by the observed ratio of prompt-to-late energy seen in neutral current elastic
scattering events.

In the end, detector model errors have no significant effect on the oscillation sensitivity of
this analysis.
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Figure 8.10: (Left column) Data/simulation comparisons (black/red) of the reconstructed
Michel energy distribution for four Monte Carlo variants drawn from an early (not quite
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Chapter 9

Event reconstruction

9.1 Introduction

The event reconstruction uses the method of maximum likelihood [9] [131] to estimate track

parameters. We need seven parameters to describe a single particle track:
e starting point (zg, yo, 20)
e starting time (7j)
e direction (A, ¢o)
e energy (FEp).!

We refer to this parameter set as x. The observables in the likelihood are the PMT mea-

surements. For each tube we have
e 3 bit indicating whether the tube was hit or unhit
e if the tube was hit, the charge of that hit
e if the tube was hit, the time of that hit.

Treating the PMTs as independent and treating each PMT’s charge and time measurements
as independent, we can immediately write down the likelihood that is to be maximized:

L(x) = H P(i unhit; x) HP(Z hit; x) fq(gi;x) fi(ti;x) , (9.1)

unhit hit
where the products are taken over (un)hit PMTs and where
e P(i (un)hit; x) is the probability that, given the parameters x, the i-th tube is (un)hit,
e ¢; is the observed charge of the ¢-th tube’s hit,

e t; is the observed time of the i-th tube’s hit,

'Tn this chapter, “energy” is kinetic energy.
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e fy(gi;x) is the p.d.f. for the i-th tube’s charge given x evaluated at the observed value
gi, and

o fi(t;;x) is the p.d.f. for the i-th tube’s time given x evaluated at the observed value
t;.

It is convenient to work with the negative logarithm of £, and since the charge-related
and time-related portions are somewhat distinct, we define F', Fy;, and Fy:

F(x) = —log(L(x)) = Fy(x)+ Fi(x) , (9:2)

with
Fy(x) = - Ehj log(1 — P(i hit; x)) — ;log(P(z' hit; x) £, (gi; x)) (9.3)
Fi(x) = - glog(ft(ti; x)) , lt (9:4)

where we’ve replaced P(i unhit;x) with 1 — P(: hit;x). For brevity, we usually call F,
and F; the charge and time likelihoods, although they are actually negative logarithms of
likelihoods.

9.2 The charge likelihood

If the number of photoelectrons n produced in a PMT is known, then the p.d.f. f,(g) for the
observed charge ¢ is fully specified, regardless of x. Further, n is a Poisson variable whose
mean j, is a function of x. Finally, the probability of a hit actually occurring depends only
on this Poisson mean:? P(i hit) = 1 — e #». These facts motivate a two-step approach to
calculating the charge likelihood.

Step 1

Using the known optical properties of the detector and the known propagation properties of
particles, one can determine, for a given set of track parameters x, the mean number of pho-
toelectrons that a particular PMT should see. We call this quantity the PMT’s “predicted
charge” u. When calculating p, one must consider

e the quantity of light produced by the track,
e the angular profile of the produced light,
e the absorption, scattering, and fluorescence of the light in oil,

e the acceptance of the PMT,

*This ignores discriminator threshold effects which are small.
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and anything else that influences the mapping (zo, yo, 20, 10, 00, ¢o, Eo) > 4.

Step 2
The expression for F, given in Eq. (9.3) can be rewritten in terms of these predicted charges
(or Poisson means) {u;}:

Fy(x) = = ) log(1 — P(i hit; i) — > log(P(i hit; ) fo(gis i), (9.5)

unhit hit

where we’ve recast the symbols P and f as functions dependent on y;, making the mapping
of Step 1 implicit. The two interesting quantities on the right hand side of Eq. (9.5),
namely P(hit; 1) and f,(q; 1), depend only on the properties of the PMTs, their downstream
electronics, and the Poisson distribution. They do not depend at all on the happenings inside
the detector volume. This stepwise approach decouples the fitter’s track and optical photon
models from its knowledge of PMT and electronics behavior. The latter is determined using
laser flask data (§9.2.3). The former is described next.

9.2.1 Calculating predicted charge p

We begin with a simplified scenario, bringing in complexities as we go. Throughout, we
deal with a fixed PMT and fixed track parameters, allowing us to drop from our notation
references to these quantities. We define many functions in this section without imme-
diately discussing how they are established in practice. These discussions are saved for
Appendix C.3

A simple case

Assume that we have a point-like event that emits scintillation light only. Also assume that
all optical photon extinction in the oil is due to absorption (i.e., there is no scattering or
fluorescence.) Also assume that all materials are non-reflective.

We take a PMT situated as depicted in Figure 9.1. The distance between the event
and the PMT is labeled r, and the angle of incidence of the light is labeled 1, with n=0
corresponding to normal incidence. We write the predicted charge for this PMT as

p=22Q(r)T(r)e(n) (9.6)
where:
e & is an event-energy-dependent light yield.*

e Q(r) is a distance-dependent solid angle factor (§C.1).

3In general, the functions are built from the Monte Carlo, which includes all of the physical phenomena
we are considering in the reconstruction algorithm.

4Since they show up in so many places, we suppress explicit Ey dependences throughout this document.
For example, we write here ® instead of ®(Ep). See §C.5 for a list of functions with full arguments.
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event vertex

nC\\>0

Figure 9.1: A simple geometry. A point source is located a distance r from a PMT, and
the light impinges on the PMT at an angle n from the normal.

e T'(r) is the transmission of the oil and PMT glass as a function of the light propagation
distance. This function includes the wavelength dependence of photon production,

propagation, and detection (§C.2).
e ¢(n) is the n-dependent acceptance of the PMT (§C.1).

Any overall constant factors can be taken as part of ®.

An extended track

Now take the event to be an extended line source. The light production need not be uniform
along the track, so we introduce p(s), the probability density for light emission as a function
of the distance s along the track.® The track origin corresponds to s=0. (See Figure 9.2.)
Examples of p(s) are plotted in Figure 9.3. As p(s) is a probability density, it satisfies
Joo pls)ds = 1.

The predicted charge for our PMT becomes an integral along the track,

p=a / " ds p(s) () T(r(s)) e(n(s)) (9.7)

—0o0

where the s-dependences of r and 7 have been made explicit. For ease of notation, we

This is another instance of a suppressed Fo dependence: p(s; Eg). See §C.5 as needed.
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7

‘ extended track

Figure 9.2: An extended source of light. The distance r and angle n are now functions of
s, the distance along the track. Implicitly, the s dependences of r and 7 require knowledge
of the geometric track parameters. s=0 occurs at the track’s starting point.

redefine , T, and € to be functions of s directly rather than functions of r and 7,

p= / " ds p(s) ) T(s) e(s) | (9.8)

—0o0

although this requires a fixed x. Since we are about to turn on Cherenkov light, we add

“sci” subscripts to those expressions that are light-type specific:

P /_ " 5 peci(5) (s) Tt (3) €(5) - (9.9)

Cherenkov light

Figure 9.4 introduces 6, the angle to the PMT from the track. With this angle, we can
write the Cherenkov predicted charge ucy as

(e o]
lch = <I>Ch/ ds pcn(s) (s) Ten(s) e(s) g(cos 6(s); s) - (9.10)
—0oQ
This expression differs from its scintillation counterpart only by the presence of an angular
emission profile g(cos §(s); s) (which, in the scintillation case, amounts to a constant factor
which is absorbed into the definition of ®g.) The “; s” part of g(cos0(s); s) indicates that
the emission profile g(cos#) changes as the track propagates and loses energy, while the
“f(s)” part reminds us that the angle 6 depends geometrically on which part of the track
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Figure 9.3: Scintillation production profiles p(s) for 300 MeV muons (top) and electrons
(bottom). See also §C.4.

we are considering. Figure 9.5 shows examples of g(cos 6;s) and pcn(s)-

We skipped a few steps in writing the above expression. A more complete treatment
would involve %, the differential probability of sending an emitted Cherenkov pho-
ton in the direction (cos @, ¢).% This quantity would appear inside an integral over the solid
angle subtended by the PMT. However, by assuming that % is constant across
the PMT face, we effect the integration simply by multiplying the differential probability
by the solid angle factor 2. Further, the azimuthal symmetry of the track allows us to
reduce the two-dimensional expression % to a one-dimensional one. We take this
one-dimensional expression to be the angular p.d.f. for Cherenkov light emission, g(cos ).

Doing so hides a factor of ﬁ in the definition of ®¢y, since g(cos 6) satisfies

/1 g(cos B;s)d(cos @) =1 (9.11)

-1

for all s.

8¢ here is the azimuth around the track.
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Figure 9.4: The angle 0 defined.

Indirect light

If it were not for scattering, fluorescence, and reflections,” we’d be finished. We would
add psei to pcon to get the total predicted charge for the PMT. But our detector does have
scattering, fluorescence, and reflections (together: indirect light), which we introduce now.

We begin with indirect light that originated as scintillation light. Take an infinitesimal
element ds along the track. We view this element as a point source situated in the tank at
radius R and at angle © relative to the PM'T’s position. Figure 9.6 shows this configuration.

The direct light from such a source has already been calculated. It is the right hand
side of Eq. (9.9) without the integration, namely

dugcife“ = ds Pgci Psci(s) Qs) Tei(s) €(s) - (9.12)

Writing an analytic expression for the indirect light from this point source would involve

an elaborate integral over emission angles and scattering points throughout the tank. To

avoid this, we observe that the value of such an integral must be proportional to the source

strength and must otherwise depend only on the topological variables R and ©. We can

eliminate the source strength by forming a ratio of the indirect and direct light predictions:
indirect

Asci(R7 COs @) = % - (9.13)

sci

We call the ratio Agi(R,cos ©) the scintillation “scattering table” (although it includes all

Tand the computational impracticality of the expressions
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Figure 9.5: Cherenkov emission profiles for 300 MeV muons (top) and electrons (bottom).
The wide panels show pcp(s), the p.d.f. for Cherenkov light production along the track.
The square panels provide views of g(cos #; s). The closing of the muon Cherenkov cone can
be seen at large s. §C.4 has more.
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Figure 9.6: The geometry for indirect light. An infinitesimal line element ds of the track is
treated as a point source situated as shown. R is the distance from the tank center to the
source and O is the angle about the tank center from the point source to the PMT.

indirect light, not just scattered light.) This table is a property of the detector. It depends
not on the particulars of the track but only on the (R, cos ©) geometry of the source element
and PMT. §C.3 describes the creation of Ag;(R,cos ©).

With the scattering table defined, we can immediately incorporate indirect light into
the scintillation prediction:

tsci = Psci /_OO ds psci(s) Qs) Tuci(s) €(s) [1 + Asci(R(s),cos O(s))] , (9.14)

where we have made explicit the fact that the arguments R and © change as s varies.

For Cherenkov light, the situation is more complex since the light emission is anisotropic.
We need two additional variables that specify the direction, relative to the PMT position
and the tank center, of a vector source. We make the following non-unique choices for these

two variables:

e O, the angle between the source direction and the source-to-PMT ray. This is the
same 0 used elsewhere.

e ¢, the angle between (a) the plane containing the tank center, the PMT, and the
source; and (b) the plane containing the track and the tank center.

Figure 9.7 shows these variables graphically.
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Figure 9.7: Geometry for the Cherenkov scattering table. All broken lines lie in the plane
of the page. The track comes out of the plane. € is the angle between the track and a
vector pointing from the source to the PMT. ¢ is the track’s angle of rotation about the
line labeled R.

With the topology defined, we could write the Cherenkov analog of Eq. (9.13) as

d Mindirect

At (R, cos ©,cos b, ¢) = W . (9.15)

However, it will be convenient to normalize the indirect Cherenkov light to a fictitious
direct,iso

isotropic Cherenkov source with predicted charge dyqy, , so we actually write
d'u/indirect
Ach(R,cos ©,cos8, ¢) = % . (9.16)
d/ftcl}ll \i
We now construct the total Cherenkov prediction
UCh = u%iﬁect + Ni(ljll(lﬁreCt , (9.17)
with pdiree® given by Eq. (9.10) and with
. . w
et = <I>Ch/ ds pcn(s) (s) Ton(s) €(s) Acn(R(s), cos ©(s), cos 8(s), ¢(s)) , (9.18)
—0oQ
where we have used
dpEre® = ds dap, pon(s) (s) Ton(s) €(s) (9.19)

113



in analogy with Eq. (9.12). See §C.3 for more.

We are now finished with our charge predictions. Summing the Cherenkov and scintil-
lation predictions yields the total predicted charge for the PMT,

U= pch + Msci - (9.20)

9.2.2 Computational realities

The above expressions for predicted charge all involve integrals along the track. Numeri-
cally evaluating these integrals with sufficient spatial granularity for every PMT in every
minimization step would result in unusably slow code. We avoid this by performing all
integrations beforehand, as described below.

Parabolic approximation (scintillation version)

Eqg. (9.9) gives the direct scintillation predicted charge. Its integrand,

Psci(8) Q(s) Tiei (s) €(s) (9.21)

can be thought of as having two factors, the production profile psi(s) and the effective
acceptance, J(s):
J(8) = Q(s) Tsci(s) €(s) - (9.22)

If the components of J(s) vary gradually enough, we can take it to have a parabolic form:
J(s) = jo + jis + jas” . (9.23)

Doing so allows us to write the predicted charge as

o0
Ngcl{eCt = (I)sci/ ds psci(s) (JO + 18+ j232)

—0o0

o0 [ee] [e.e]
= By (j()/ ds psci(s) + j1/ ds psci(s) s + j2/ ds psci(s) 32> . (9:24)
—00 —00 —00
The first integral in Eq. (9.24) is identically unity, and the last two integrals we label I3
and I5%, giving
P = Da (o + I3 + j2I37) (9-25)

Since the shape of pgi(s) depends on the energy Fy of the particle, these integrals depend
on Ey. However, they depend on no other track parameter. It is thus feasible to tabulate
these integrals beforehand, eliminating the integrations from the minimization code. We
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obtain the coefficients {j;} by evaluating Eq. (9.22) at three points along the track,

J() = J(O)
J1 = J(Asmid)
J2 = J(QASmid) ;

where Asy;q is the mean of the Cherenkov emission profile.® The parabola that goes through
these three points has coefficients

Jo=Jo
. _ —3Jo+4i —Jo
= 2A3mid
i = Jo—2J1 + Jo
2= "aoA 2
2A312nid
direct

completing the expression for in Eq. (9.25). Figure 9.8 shows an example.

SC1
The extension to indirect scintillation light is straightforward. The only difference is the

definition of J(s):

J(s) = Q(s) Taci(s) €(s) Asci(R(s),cos O(s)) (for indirect scintillation light) . (9.26)

Parabolic approximation (Cherenkov version)

The expression for Cherenkov predicted charge involves the angular profile g(cos(s);s).
Including g(cos (s); s) in the definition of J(s) would ruin the parabolic treatment, as the
function can vary violently near the Cherenkov angle. We therefore keep J(s) as-is,

J(s) = Q(s) Ten(s) (s) (9.27)

and we put the angular profile inside the integrals:

) o0
pdivect — g (jo/ ds pcn(s) g(cos 0(s); s)

—0o0

i / " ds pon(s) glcos B(s); ) s

o

ta [ dspeulo)gloost(s):9)5 ) (9.28)
—0o0

As in the scintillation case, these integrals depend on the energy of the track. They also,

however, depend on two parameters that define the PMT-track geometry.” We choose as

these two parameters the vertex-PMT distance, r(0), and the cosine of the angle-to-tube as

8The choice of where to evaluate J(s) is somewhat arbitrary. Any three points that sample a good bit of
the light-producing range of s would do fine.

9This latter dependence comes from the function #(s). That is, the mapping from s to 6 changes with
track orientation and tube distance.
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Figure 9.8: An example of J(s). (Top) A possible track-PMT geometry is shown. The value
of J(s) is evaluated at three points separated by 0.595 m, the value of Asyiq for a 300 MeV
muon. (Bottom) The full J(s) expression (Eq. (9.22)) is shown by the solid curve. The
parabolic version, obtained using the three points indicated, is shown by the dashed curve.
Using psci(s) for a 300 MeV muon, the integral [ ds pgi(s) J(s) with the parabolic J(s)
differs from the one with the full J(s) by 0.3%.

viewed from the vertex, cos #(0). Labeling the integrals ZC! (i € {1,2,3}) gives
pdret = oy (jo I + 1 TP + g IQCh) . (9.29)

Although the integrals {Z"} depend on three parameters, it is still feasible to tabulate
their values ahead of time, again keeping integrations out of the minimization code.

For indirect Cherenkov light, recall that the scattering table Acy, is normalized to a ficti-
tious isotropic Cherenkov source. Thus, the parabolic method used for indirect scintillation
light works for indirect Cherenkov light. J(s) becomes

J(8) = Q(s) Tcn(s) €(s) Acn(R(s), cos O(s),cos0(s), p(s)) (indirect Cher. light) , (9.30)
and we tabulate the two energy-dependent integrals [ dspcn(s)s®: IICh and IQCh.
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9.2.3 The functions P(hit; ) and f,(¢; 1)

With the predicted charges in hand, Eq. (9.5) gives us the charge likelihood, provided we
know the forms of the functions P(hit; 1) and f,(g; p).

P(hit; p) :

The actual number of photoelectrons n in a hit is a Poisson variable with mean y. Assuming
that any single photoelectron will fire the discriminator, the probability of a hit P(hit; u)

is simply
P(hit; p) = P(n>0; p)

=l—e¢*, (9.31)

folg;p) =

For a hit with a given predicted charge u, we need the p.d.f. for the hit’s measured charge
g. This p.d.f. involves

e the underlying Poisson process that determines n,

e the properties of the PMT,

e the amplification and digitization of the anode signal, and

e the conversion of the digital values into a properly calibrated charge measurement.

In our case, the laser flasks offer a convenient way to vary p while observing ¢q. Thus, one
can simply map out the p.d.f. f,(g;p) empirically [132].19 Figure 9.9 shows examples of

fq(q;,u)-

9.3 The time likelihood

The time portion of the likelihood requires that we know the p.d.f. f;(¢;x) for a PMT’s
measured time ¢ given the track parameters x. Some of the dependence on the track
parameters can be eliminated by working with a “corrected time” ¢, which we write as

T(Asmid(Eo))  Asmia(Eo)

cn c

te=1—Ty— (9.32)

where

e t is the hit’s measured time,

0There are several ways to learn p for center-flask laser events, the simplest of which is to use Poisson
statistics and the observed PMT occupancy. Beyond 15 PE or so, when there are rarely unhit tubes with
which to measure PMT occupancy, one must do something fancier. The caption of Figure 8.9 mentions one
scheme. Ref. [132], which discusses the creation of f;(q;u), uses another.
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Figure 9.9: Examples of f(g;u).

p.d.f. for old tubes; the bottom, new tubes. The means are near
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These plots show the probability density functions for
observing charge q on a hit PMT with predicted charge u=0.7. The top panel shows the

o T} is the track’s starting time,

o=z ~ 1.4, as expected.

o Asmid(Eo) is the mean of the Cherenkov emission profile for a track of energy Fy (the

track “midpoint”),

e 7(Asmia(Ep)) is the distance to the PMT from the track midpoint,

e c is the speed of light, and

e ¢, = 19.50 cm/ns is the speed of light in mineral oil used for ¢°. (The exact value

isn’t critical, as the p.d.f. we create below can be for any quantity.)

The corrected time removes from our observable ¢ the global shift 7, the photon time-

of-flight from the track’s midpoint, and the particle’s time-of-flight from its origin to its

midpoint. We could have chosen to take the corrected time from the track origin rather

than the track midpoint, eliminating the last term in Eq. (9.32) and the involvement of

Asmiq- However, the above form of ¢ improves the validity of the simplification we are

about to make.
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9.3.1 Reducing the problem

With ¢¢ defined, we seek the p.d.f. fic(t¢) for the corrected time t¢ given arbitrary PMT-track
configurations. The space of these configurations is five dimensional, and producing tables of
fie(t¢) throughout configuration space is a task orders of magnitude beyond our computing
resources. To reduce the task, we make the following assumption: the corrected time p.d.f.
depends only on the track energy, the predicted “prompt” charge, and the predicted “late”
charge. (We define “prompt” and “late” charge later.) Loosely, this is the assumption that
the shape of the corrected time spectrum is dominated by the physical extent of the track
(characterized by its energy) and by the raw amounts of prompt and late light reaching
the PMT. The extent of the track affects the spread of possible hit times, since there is a
spread of photon production times, while the amounts of prompt and late light affect the
time distribution’s “peak-to-tail” ratio as well as pile-up and slewing phenomena.

Although this approximation reduces configuration space to three dimensions, we are
still limited by computing, so we make one final simplification. For a fixed energy Ey, we do
not make a p.d.f. indexed by the pair (Uprompt, fiate)- Rather, we make separate “primitive”
distributions, indexed by either lprompt OF flate, and from these primitive distributions
we construct the full p.d.f. on-the-fly. For both historical and computational reasons, we
actually create Cherenkov and scintillation primitive distributions which we subsequently
label as the prompt and late primitive distributions.

9.3.2 Creating the primitive distributions

We first describe the Cherenkov primitive distributions. Everything below is done separately
for old and new tubes and for muons and electrons.

We begin with simulated contained events throughout the detector with isotropically
chosen directions and with fixed energy Ej. These events are created with direct Cherenkov
light only; all other light is turned off. For each hit, we use the true track parameters
to evaluate the predicted direct Cherenkov charge u%i}rle“. We then make corrected time
histograms in various ranges of this predicted charge. Figure 9.10 shows three such corrected
time histograms for 300 MeV muons. Since only Cherenkov light is present, the histograms
show no late-time features. Also, the shape of the time spectrum depends on the u%iﬁe“ range
examined, with the spectrum getting narrower and earlier as the predicted charge increases.
We parametrize this charge-dependent shape variation by fitting the time spectrum in each
charge bin to a Gaussian (see the fits in Figure 9.10) and by subsequently fitting the resulting
Gaussian parameters (mean and RMS) to sextics across u‘éiﬁe“ values. Figure 9.11 shows an
example of these “second-level” fits. We repeat the preceding exercise at several energies,
with the two second-level fits providing seven parameters for the Gaussian mean and seven
parameters for the Gaussian width at each energy. The energy dependences of these fourteen
parameters are then fit in a final third-level parametrization. Figure 9.12 shows the first
seven of these. (Note that all this parametrization is required so that the likelihood surface
presented to the minimization algorithm is smooth.)

The Cherenkov primitive distributions are now complete. When we need the time
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Figure 9.10: Cherenkov-only corrected time histograms for hits with u%iﬁe“ near 0.05 PE,
0.5 PE, and 5 PE for 300 MeV muons. Gaussian fits like those shown here provide the basis

for the pdire® and E, parametrizations (see main text.)

distribution for a PMT of predicted charge pgirect
following. First, we evaluate the fourteen third-level quartic curves at Ey to obtain the

in an event with energy Ey, we do the

parameters for the two second-level sextic functions. Next, we evaluate the sextic functions
direct

at log(ugy
spectrum is the Cherenkov primitive distribution, and we label it Gcy (t¢; Eo, fprompt)-

) to obtain the mean and RMS of the prompt time spectrum. This time

To check how well all this works, we can make corrected time histograms for hits of
various predicted charges from events of various energies, and we can compare these his-
tograms to the shapes we get from our parametrization. Figure 9.13 shows several such

comparisons.

For the scintillation primitive distributions, events are generated with scintillation light

only, and corrected time histograms are created in bins of pdifect. Each corrected time

SC1
histogram is fit to a sum of two exponentials with Gaussian smearing. The exponential
decay constants are fixed at 71=5 ns and 79=30 ns, leaving three free parameters: the time
origin, the Gaussian resolution, and the relative weight of the two exponentials. These three

direct

i) to sextics, and the resulting seven parameters for each

parameters are fit across log(
sextic are fit across energy to quartics, in analogy with the Cherenkov case. We show the

result of the scintillation parametrization for muons in Figure 9.14.
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Figure 9.11: Gaussian parameters versus u‘éiﬁe‘:t. The mean and RMS returned by the
Gaussian fits to the corrected time spectra in each u‘éiﬁe“ bin are fitted here to a sextic in
log(pdirect). Fits for 300 MeV muons are shown. To connect this figure with Figure 9.10:
The middle plot in Figure 9.10 (corresponding to pdr** ~ 0.5) has a fitted mean of —0.43
and a fitted RMS (“Sigma” in the plot legend) of 1.48. These values can be found above at
abscissa u%iﬁ“t ~ 0.5.

9.3.3 Using the primitive distributions

To turn the primitive distributions into the sought after p.d.f. fic(t¢) for a given hit, we
make the following generalizations/approximations:

e Direct Cherenkov light is prompt; everything else is late.

e Hits that contain one or more prompt Cherenkov photoelectrons have corrected times
that follow the Cherenkov primitive distribution.

e Hits that contain no prompt Cherenkov photoelectrons have corrected times that
follow the scintillation primitive distribution.

The total distribution will be some mixture based on the prompt and late predicted charges.
Note that the last item above says that we are using the scintillation-based time spectra for
all late light. This is reasonable since (a) UV fluorescence, the dominant late light source,
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Figure 9.12: Third-level fits. The fits shown in Figure 9.11 for 300 MeV muons are repeated
at many energies. The seven fit parameters are then fit versus energy to quartics, as shown
here for the Gaussian mean parameters.

shares scintillation’s time structure, and (b) prompt light timing is more critical than late
light timing.

With the above assertions set, we proceed by defining the prompt and late charge

predictions:
Hprompt =0.95 ,U'%i}I;eCt (9.33)
Late = 0.05 ,u(éi}l;ect 4+ Mi(rjl}tliirect T ,UgcifeCt + isIé?ireCt , (934)

where 5% of the direct Cherenkov light has been called late to account for PMT late
pulsing. The Poisson distribution gives us the probability that the hit has no prompt or
late photoelectrons:

P(no prompt PEs) = e #prompt
P(no late PEs) = ¢ Hate
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Figure 9.13: Verifying the Cherenkov primitive distributions. For simulated muons of three
energies (250 MeV (top), 600 MeV (middle), 1500 MeV (bottom)), the distributions of
corrected times for hits in eight udciﬁe“ bins are shown as points with statistical error bars.
The curve overlayed on each plot is the parametrization discussed in the text. The dis-
tributions are well described by the parametrization procedure except for low charge hits
in high energy events (rare) where the space-reduction approximations of §9.3.1 begin to
break down.
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Figure 9.14: Verifying the scintillation primitive distributions. For simulated muons of
three energies (250 MeV (top), 600 MeV (middle), 1500 MeV (bottom)), the distributions
of corrected times for hits in eight ugciire“ bins are shown as points with statistical error
bars. The curve overlayed on each plot is the parametrization discussed in the text.
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With these probabilities, we construct the probability that a given hit contains at least one
prompt photoelectron:

1 — P(no prompt PEs)

P t PE t | hit) = .
(promp present | hit) 1 — P(no prompt PEs) P(no late PEs)

(9.35)

Using this quantity as the weight wy, for the Cherenkov (prompt) primitive distribution and
using wj=1—wp, as the weight for the scintillation (late) primitive distribution, we write,

finally, our full p.d.f.,

fie (tc; Ey, MHprompt, ,Ulate) = Wp GCh(tc; Ey, Nprompt) + w Gsci(tc; Ey, Hlate) 3 (936)

where we’ve used G and G to represent the Cherenkov and scintillation primitive dis-
tributions, respectively.

It is important to note that Eq. (9.35) gives the probability that a prompt photoelectron
exists given a hit exists. This condition removes the overall probability of a hit occurring.
Thus, even if the absolute probability of a prompt photoelectron is low, wy, can be large if

Hate <K MUprompt-

9.4 4 and e hypotheses

The single-track reconstruction algorithm can assume either a muon or an electron track.
We list here the components of the algorithm that depend on the track hypothesis and that
are direct inputs to the fitter. We do not list any quantities that are encapsulated by these,
even if they are hypothesis dependent. The creation of a new track hypothesis (e.g., proton)
would require the items listed.

Quantities that depend on the track hypothesis:
o Dyi(Eo), Pcn(Eo)
o I{(Eo), If(Eo), IT"(Eo), IF™(Ey)
o I§M(Ey,7(0),c080(0)), ZICH(Ey,r(0),cos6(0)), Z$P(Eo,r(0),cosd(0))

e Gcn (tc; Ey, Uprompt)a Gsci(tc; Ey, lf'late)

9.5 Two-track fits

A single track with seven parameters is sufficient for reconstructing cosmic rays, Michel
electrons, and charged current quasi-elastic events (ignoring the minor perturbation from
the recoil nucleon). Neutral current 70 events, however, require a two-track likelihood.
Figure 9.15 shows the twelve parameters needed to describe two <y tracks originating from
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a common vertex.'! The electron tables serve double duty as the 7 tables since the Mini-
BooNE detector cannot distinguish an e from a -y. However, a -y track picks up a conversion

distance s.
t;X:y;Z -.-..
Lx,y,z s, "=~ :11 0
44 ,
2712
EZ
(@) single e/u track (b) two y tracks

Figure 9.15: Internal fitter parameters for (a) a single muon or electron track and (b) two
v tracks. Each v track includes a conversion distance s. One can constrain the parameters
such that the invariant mass of the v system is always M, o.

Two-track charge likelihood

Recall that the charge likelihood Fj; depends only on the measured charge ¢ and the total
predicted charge u for each PMT. To form the two track version, one simply needs to add
together the predicted charges from the two tracks to form the total predicted charge. That
is,

B = Mtrack 1 + Mtrack 2 - (937)

Two-track time likelihood

The time reported by a PMT is the time of the earliest threshold-crossing pulse. This
fact motivates the weighting of the primitive distributions described in Eq. (9.36), where
the prompt primitive distribution is weighted according to the probability that a prompt
photoelectron is present given any photoelectrons, and where the balance of the weight is
given to the late primitive distribution. This scheme is extended to handle the case of two
tracks as follows.

The two single-track primitive distributions are formed for the i-th track: Géh and Gici.
In anticipation of the clumping together of all late light below, the two late (“sci”) primitive

"The code is equipped to handle one, two, or three tracks with arbitrary relationships, including distinct
4-vertices. However, this oscillation analysis needs only the cases described in the text.
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distributions are averaged to form

A~

1
Giei = 5(Gsei + Giai) - (9.38)

Of the two tracks present, one has a midpoint that is nearer to the target PMT than the
other. We label that track’s quantities with “n” (near) and the other’s with “f” (far). We
then define three Poisson probabilities in analogy with Eq. (9.33):

Hprompt,n = 0.95 pies! (9-39)
Hprompt,f = 0.95 N((illlﬁ?f(:t (940)
Hlate = HUtot — Mprompt,n — MUprompt,f - (94.1)
Continuing as before,
P, = P(no prompt PEs from near track) = e Hpromptn
P; = P(no prompt PEs from far track) = e Hprompt.
B = P(no late PEs) = g Mate
This leads to the weights
1- P,
Wy = =
1- P, PR
1-R
_ (1 —
U= TR T

where w,, is the probability that a prompt photoelectron from the near track exists given
that any photoelectron exists, and so forth. We use these weights to combine the two
prompt primitive distributions and the averaged late primitive distribution:

ftc(tc) = Wy GCh,n(tc) + wg GCh,f(tc) + wy ésci(tc) s (9.42)

thus forming the complete two-track corrected time p.d.f.

9.6 Minimizing F = —log(L)

With the likelihood £ defined, we must find the parameter set x that minimizes its negative
logarithm F'.

9.6.1 e and u hypotheses (one track)

There are two complexities in the single track minimization.

1. The energy parameter Ej is tied to the geometry of event via the track profiles p(s; Ey)
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and g(cos 6(s); s, Ep). If the spatial parameters (zg, etc.) are varied together with Ey,
the minimization algorithm occasionally gets confused by correlations between these.
The solution is iteration.

2. Parametrization of input tables results in a smooth likelihood surface £(x). However,
the discrete PMT lattice imprints a small fluctuating signal on £(x). As a result,
minimization algorithms that rely on gradients or that provide little user control
over step sizes are poorly suited to the problem. Thus, the MIGRAD method of
Minuit [133] has difficulty, but the SIMPLEX method works well. We use the latter.

Seed parameters are derived from a fast fitter [132]. The energy Ej is held at its seeded value
and the six remaining parameters (zg, Yo, 20, 10, 0o, ¢o) are varied via Minuit/SIMPLEX to
find a temporary minimum of F. The energy is then freed while the other parameters are
fixed, and another minimization is performed. FEj is fixed once more and the others freed
to find the final minimum of F. No further iteration is needed, thanks in part to the good
energy seed available from the fast fitter. The parameters from the final SIMPLEX call are

returned as the answer.

9.6.2 7° and 7y hypotheses (two tracks)

Consider the two situations shown in the cartoon of Figure 9.16. The event has two «y tracks
whose Cherenkov rings are represented in black. In case (a), the twelve fitter parameters
are near the correct answer. In case (b), the parameters are such that both tracks are
directed toward the dominant ring. Case (b) represents a local minimum which may offer
a worse likelihood than case (a), yet the fitter is trapped. All small parameter changes
result in an increased F'. For example, sweeping one track over to the smaller ring involves
passing through a region with little detected Cherenkov light. The intermediate states are
disfavored, and the minimization code will have difficulty finding a lower F' on the other
side of those states, especially if three or four additional parameters (E;, Es, etc.) must be
adjusted simultaneously to realize the improvement.

The two-track fits require a minimization approach that avoids these traps in the like-
lihood surface. Monte Carlo 7° events are used to identify trapping scenarios, and the
minimization algorithm addresses all of these by brute force. Rather than enumerate the
individual scenarios, we instead just describe the minimization algorithm. Its complexity is
a reflection of the difficulty and importance!? of finding the global minimum of F(x).

Collecting seeds

The procedure begins with the collecting of seed parameters for the eventual SIMPLEX
call.

e The conversion lengths s; and s9 are seeded with either 50 cm or 250 cm, leading to
four possible (s1, s2) pairs.

2gince the fit results are used to reject 7° events in the v, selection
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Case (b):
Figure 9.16: The two fitter configurations discussed in the text. The black rings represent
the desired configuration. The overlayed colored rings show (a) a near-correct configuration
and (b) a trapped configuration.

e 01 and ¢; are seeded with the best-fit e-hypothesis (“e-fit”) direction or with one of
eight perturbations (Note 1 below).

e 05 and ¢, are seeded with the best (Note 3 below) directions from a full grid of tested
directions (Note 2).

e The 4-vertex of the event is seeded with the e-fit 4-vertex, shifted according to s1, 61,
and ¢;.

e The seed for E; is approximately the e-fit energy, while the seed for F, is, when
possible, the energy needed to give an invariant mass M,o. The energy seeds are
actually based on M, o and a simulation-established empirical expression that gives
the second ring’s fractional energy contribution to the e-fit energy as a function of the
angle between the tracks.

Notes:

1. The nine possible seed directions for track 1 are created as follows. The spatial distri-
bution of PMT charge is projected onto a plane perpendicular to the e-fit direction.
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The covariance ellipse of the resulting 2D distribution, and in particular the direction
of the ellipse’s semimajor axis, is found. The nine possible track 1 seed directions
are rotations of the best e-fit direction by 0, £0.159, +0.450, and +0.644 (radians)
parallel to the semimajor axis, and £0.159 perpendicular to the semimajor axis.

2. The track 2 grid search can be coarse (24 ¢ steps and 12 € steps) or fine (50 and 25).

3. Three types of track 2 directions are saved in the grid search: the best total likeli-
hood, the best charge likelihood when the rings have similar energies, and the best
charge likelihood when the rings have dissimilar energies. Similarity is defined by
Eyigger /Esmaner < 2. Additionally, the second best direction from each category is
saved, leaving six directions in all. However, see Note 4.

4. When one of the eight alternate track 1 directions is being used, the track 2 grid search
skips those directions which imply Ehigger/Esmaller > 5. In these highly asymmetric
cases, the e-fit direction would be a good (unperturbed) description of the track 1
direction, so there is no reason to test these asymmetric cases while exploring alternate
track 1 directions.

Each permutation of (s1, s9) gets its own set of these six best/second-best directions, leaving
twenty-four seeding parameter sets in total. Each set goes through two Minuit sequences:

e The first sequence has two steps. (1) The energy and angle parameters are fixed
and SIMPLEX is used to minimize F' with respect to the other parameters. (2) All
parameters are then freed, and a final SIMPLEX minimization is run.

e The second sequence differs in that only the energy parameters are held fixed in the
first step.

In all forty-eight fit sequences, the final step is a fully free SIMPLEX call. That is, all of
the above complexity serves only to provide forty-eight different seeds to this fully free fit.
The best parameter set (lowest F') from the forty-eight final SIMPLEX calls is reported as
the answer.

Fixed-mass option

The above procedure can be run with a constraint on the invariant mass. This is accom-
plished by removing F, as a free parameter, instead setting it in the likelihood function
with )
MZ

Ey = ,
2 2E1(1 — cos Oiracks)

(9.43)

where 0;q0cs is the angle between the tracks. This fixed-mass mode is the actual 7° hy-
pothesis, whereas the free-mass mode allows for mass reconstruction. Both are used for 7°
identification, with the former lending its maximum likelihood £, 0 and the latter providing
the mass M., .
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Speed

The algorithm was trimmed as much as possible while fulfilling the needs of the oscillation
search. Indeed, each element of the minimization procedure is tackling a known trapping
scenario. For uses other than ¥ rejection (e.g., 7° cross section studies), one may be willing
to tolerate some loss in performance if CPU time is greatly decreased. The code provides
user switching of many of the branches above, and such speedups are used for the 7¥ rate
measurement of Chapter 11.

Conversion constraint

The 7 conversion points (but not the event vertex) are constrained to be within the main
detector volume. This prevents the fit from removing a track’s influence by inflating the
conversion length. (If this were allowed, the 7% hypothesis could always give a better
likelihood than the electron hypothesis.)

9.7 Performance

We examine briefly the performance of the reconstruction algorithm by fitting simulated
neutrino events. We apply the 1 and e one-track fits to v, and v, CC QE events, respectively,
and we apply the 7° and yy two-track fits to NC 7° events. The simulated events include the
appropriate nuclear debris (p, n, ) in addition to the p, e, and 7° tracks. Minimal selection
cuts are applied to ensure that events are contained within the main detector region and,
for plots not directly related to vertex reconstruction, within the fiducial volume of the
analysis.

Figures 9.17 through 9.23 follow, with commentary included in the captions. Some
typical performance numbers: vertex resolution, 20 cm; energy resolution, 12%; angular
resolution, 3°; 7° mass resolution, 13%. Reconstruction biases are generally much smaller
than these resolutions, although large biases are not intrinsically harmful to the analysis
if they appear in data and simulation alike. (The important question of data/simulation
agreement is addressed in Chapter 13.) The many performance metrics we have omitted in
the interest of page count reveal nothing unexpected.

Supplement to the caption of Figure 9.19.

e Prompt Cherenkov light provides the fitter with most of its energy, angle, and position
information. Thus, muon resolutions get considerably worse at lower energies where
Cherenkov production is dropping.

e At low energy, it is difficult to learn anything about the 7° momentum vector since
the symmetric v+ final state is randomly oriented with respect to it. However, the
Cherenkov light still provides a good 7° vertex even at low energy.
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e A 70 vertex is harder to reconstruct than a v, CC QE vertex since the former is
spatially displaced from the light production, owing to the ~50 c¢cm < conversion
length.
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Figure 9.17: Reconstructed radial event position plotted against truth. The top, middle,
and bottom panels show v, CC QE, v, CC QE, and NC 70 events. As expected, x4 and

e events that originate beyond the optical barrier reconstruct as if they begin just at the

optical barrier. The fiducial volume cut R < 500 cm is used throughout the analysis (along

with others).
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Figure 9.18: u, e, and 7° reconstructed kinetic energy plotted against truth.
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Figure 9.20: Fitted invariant mass M., for NC 70 events in three low energy regions.

Continued in Figure 9.21.
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Chapter 10

v, charged current quasi-elastic
scattering

v, charged current quasi-elastic (CC QE) scattering, v,n — p~p, accounts for 40% of
MiniBooNE events. Its simple final state allows straightforward event reconstruction. Its
v, flux is directly related to the possible v, — v, signal flux. Its CC QE cross section is
shared by the v, CC QE events being selected in the oscillation analysis. And, the largest
component of the intrinsic v, flux (77 —ut—ve) comes from the same 71’s that produce
the v,’s. All of these facts make the v, CC QE sample an essential tool for understanding
and constraining components of the oscillation analysis.

10.1 Selecting v, CC QE events

If the o~ produced in a v, CC QE interaction comes to rest in the detector and decays, one
typically sees two subevents, with the first subevent having too much light to be a Michel
electron and with the second having an appropriate amount light for a Michel electron.
This basic signature is identified with the following cuts (the numeric subscript specifies the

subevent number):
e Exactly 2 subevents
o (Nyeto)1 <6
o (Nyeto)2 <6
® (Nmain)1 > 200
¢ (Nmain)2 < 200

Events near the edge of the detector can be influenced by PMT angular efficiencies, low
wavelength light (which has short extinction length), reflections, veto modeling, and sundry
other effects that are tough to simulate completely. We apply two cuts to the first subevent
to keep events away from the tank edge:

140



e R, <500 cm

e (endpoint R,) < 500 cm .

The first cut limits the radial location of the reconstructed event vertex, while the second
limits the location of the track endpoint as estimated from the reconstructed energy:

(endpoint R,) = |Ry, + 2Ania(E,)U,| , (10.1)
where the subscript “p” indicates that the muon hypothesis is used in the event recon-
struction and where Ap,;q(E),) is a range function built into the fitter that gives the mean
distance from the vertex to the track midpoint. R, and U, are, respectively, the recon-
structed 3-vertex and 3-direction of the muon track.

The PMT electronics take several hundred nanoseconds to recover normal charge re-
sponse after a hit. This perturbs the identification and reconstruction of Michel electrons
from short-lived muons. While this phenomenon is included in the simulation, a holdoff is

enforced to minimize its importance:
e t9 —1; > 1000 ns ,

where t; is the time of the i-th subevent.

One final cut is applied to eliminate events with unexplained energy (usually from pions).
The cut exploits the near-constant % of muons in our energy range. Figure 10.1 shows the
longitudinal separation

A= (Rge—Ryy) Uy (10.2)

between the muon and Michel vertices plotted against the fitted muon energy E;, for
simulated v, CC QE events (no backgrounds). The subscripts here indicate the subevent
number and the reconstruction hypothesis. Figure 10.2 shows similar plots for all Monte
Carlo and data events passing the pre-selection above, revealing the bit of background that
can be removed. We apply the cut

|lao + a1 E1, — Ay <50 cm (10.3)

called the “line cut” below, which asks whether the reconstructed energy is consistent with
the separation A)|. A nice feature of the line cut is that it is self-calibrating: the coefficients
ag and a1 which describe a typical muon are determined empirically from the CC QE sample
itself. The procedure:

1. Apply the pre-selection along with log(L./L,) < 0. (See §5.7.)
2. Create a profile version of the range vs. energy plot and fit a line to it.

3. Use the resulting fit parameters in a first-guess line cut like Eq. (10.3), except cutting
at 70 cm rather than 50 cm.

4. With this temporary line cut in place, repeat (2) to establish the final coefficients ay
and a;.
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A single iteration is sufficient. The linear fit is performed over the kinetic energy range 250 —
1200 MeV and is demonstrated for data in Figure 10.3. Table 10.1 shows the coefficients
obtained from (and used for) data, the default Monte Carlo, and several Monte Carlo
variants. Figure 10.4 compares the line cut discriminant in data and the simulation.

This selection yields a 71% pure v, CC QE sample. 55% of the background events have
QE-like final states, consisting of a muon, nucleonic debris, possible low energy photons,
and (in particular) no pions.

Initial fit First iteration
900 900 "
£ } £ o
8001 t 8001 O
. a,=-35.2cm . #**Jrﬂ | Ok a,=-32.0cm -
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Figure 10.3: Establishing the cut coefficients ag and a; in data. The initial fit (left) and
the iteration (right) are shown.

sample ap (cm) a; (cm/MeV)

data, -32.0 0.532
standard MC -34.8 0.539
MC variant 35 -28.1 0.541
MC variant 36 -28.7 0.548
MC variant 37 | -32.9 0.543
MC variant 38 -30.9 0.538
MC variant 39 -32.9 0.535

Table 10.1: Cut coefficients for different realities. In the variants, detector optical properties
and nuclear final state interactions are adjusted within their assigned uncertainties.

10.2 Using the sample

10.2.1 (Q? dependence of the CC QE cross section

As described in Chapter 7, the CC QE cross section in nuance has a Q? dependence governed
by nucleon form factors and nuclear phenomena. We calculate the approximate Q2 for an
event by assuming a stationary target nucleon:

-Q*=¢ =M -2E"(E,—p,-u,) , (10.4)
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Figure 10.4: Data (solid black curve) and Monte Carlo (red band) distributions for the
line cut residual of Eq. (10.3). The red band indicates the systematic error in the simu-
lation. The solid magenta histogram shows the background (non-CC QE events), and the
dashed magenta histogram shows the background events that contain no pions (mostly CC
7 events in which the 7 gets absorbed before leaving the nucleus.) The latter is nearly
indistinguishable from CC QE in the detector.

where (Ej, p;) is the reconstructed lepton 4-momentum, M; is the lepton mass, u, is the
incident neutrino direction, and E&*¢ is the reconstructed neutrino energy from Eq. (7.9).
Figure 10.5, discussed further below, shows the observed Q2 distribution.

The nuance cross section has a single form factor parameter — M 4, the axial vector mass.
My has been measured (M4=~1.0 GeV) with an error that is likely no smaller than 10%,
although the situation is murky. (See Ref. [134] for a summary of past measurements.)
Further, the interpretation of M, depends on the particular ? parametrizations used
for the nucleon form factors (§7.1). We bypass these issues by tuning M, to obtain Q?
agreement in our own Monte Carlo and data v, CC QE samples. For Q*<0.2 GeV?,
nuclear effects also influence the Q2 distribution. Deficiencies in nuance’s RFG nuclear
model [106] can be mitigated by adjusting the Pauli blocking parameter x introduced in
Eq. (7.8).

Since the effect of k is restricted to low Q2 values, My is determined first via a least-
squares fit to the Q% > 0.3 GeV? portion of the distribution. The covariance matrix used
in the fit accounts for all non-M 4 sources of error, with detector model uncertainties dom-
inating. The fit result: M4 = 1.15 £+ 0.07.

With M, frozen at this value!, a fit for & is performed to the Q% < 0.3 GeV? region. This

'though later freed to confirm that Ma-k correlations are negligible
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is not a least-squares fit, though. While x provides a mechanism for adding or removing low-
Q)? events, we cannot expect it to perfect the shape of the low-Q? part of the distribution.
Thus, a x? fit can give underestimated errors, as x may provide insufficient freedom to
respond to shape uncertainties in the covariance matrix. However, the eventual v, — v,
signal extraction procedure depends only on reconstructed neutrino energy, which in turn
is fairly insensitive to the fine structure of the Q? distribution, as Figure 10.6 demonstrates.
Thus, x and its uncertainty are set by examining the total number of low-Q? events

0.25 GeV?

1= [ @, (105)
0 GeV?

where f(Q?) is the Q? distribution. x is chosen to give Ig,;a=Inc (requiring k=1.024), and

its uncertainty (o,=0.02) is chosen to produce a spread in I equal to the spread caused by

all other sources of error (detector model, background levels, etc.)

Figure 10.5 shows the Q2 distribution for data, the tuned simulation (Ms=1.15 +
0.07 GeV, k=1.024 £+ 0.02), and the standard nuance simulation (M4=1.03 GeV, k=1).
The post-tuning agreement is good. An independent extraction of the two CC QE parame-

ters arrives at consistent results with a fairly different fit procedure (M4=1.23 +0.20 GeV,
k=1.019 +0.011) [135].
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Figure 10.5: Distribution of @? for v, CC QE candidate events. The data (black points) and
tuned simulation (red band) are shown along with the distribution obtained using default
nuance parameters (blue curve). The red band indicates the range of systematic variation
from all cross section uncertainties.
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Figure 10.6: Insensitivity of the E*®¢ distribution to the low-Q? shape. (Top panel) Three
reconstructed Q? distributions are created by weighting (true) low-Q? events in various
ways. The “change total” version has a 20% excess of low-Q? events over the normal case,
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Q? shape. (Middle panel) The corresponding E™°¢ distributions. (Bottom panel) Ratios of
these. The low-Q? shape change has negligible effect on the E™° distribution.
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10.2.2 FE, dependent corrections

We now build generalized, energy-based corrections that improve our Monte Carlo predic-
tions in other samples by taking advantage of correlations between those samples and this
v, CC QE one. To begin, we create a map connecting the reconstructed neutrino energy
E*¢ in v, CC QE events with the underlying true neutrino energies E"°. To build this
map, we populate a two-dimensional E}*-vs.- Ei"™® histogram with Monte Carlo v, CC QE
events. Each E7°° row of the resulting histogram is then unit normalized. Figure 10.7 shows
the result. At the same time, we form one-dimensional EJ*° histograms for data and for
Monte Carlo, as shown in Figure 10.8.

Let R; represent the height of the i-th bin of the E[°° histogram. Also, let M be
the matrix incarnation of the row-normalized 2D map. For the Monte Carlo sample, the

quantities
Tj = Mj;R; (10.6)
i

are simply the bin heights of the true energy (EU) histogram that we could have formed
directly. For data, {T}} gives an inferred E}" histogram which we can be compared to
the Monte Carlo version. Figure 10.9 shows the inferred true energy histograms for data
and Monte Carlo along with their ratio. This ratio forms our E*“¢-dependent correction
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Figure 10.7: Row-normalized 2D histogram of EX*¢ vs. Ei™ for v, CC QE events in the
Monte Carlo simulation.
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Figure 10.8: Data and (uncorrected) Monte Carlo histograms of E}*°. The ~30% discrep-
ancy, which is within uncertainties, is what we wish to measure and correct for the benefit
of other event samples.

function
T]data
f(E'j) = TNC (10.7)
J

or, removing the discrete notation, f(EtUe).

We note that this is not an unsmearing procedure, which would involve inverting a
response matrix similar to M. Such an approach has significant limitations in problems
with statistical noise (such as this one). Rather, the matrix M acts as a sort of discrete
Green’s function, providing a series of E*¢ probability density functions which are weighted
and summed according to the observed EJ*¢ distribution. The power this procedure has for
correcting the Monte Carlo is governed by the energy resolution apparent in M.

Using the correction function

The simplest application of f(EF"¢) is to weight each v, CC QE event in the simulation
according to the function. We actually use f(EY") more generally, weighting

e all v, CC events,

e all v, NC events ezcept those containing 7%’s or radiative A decays (next chapter),
and

e v, — 1, oscillation events,
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(Bottom) Their ratio < f(EX"). At low EU® where no events pass the selection cuts,
f(EtUe) is extended to the left as shown by the dotted line. A similar extension occurs to
the right of 3000 MeV. (This is a technical matter only, as few neutrinos enter any relevant
sample from these extremes.)
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with the additional exception that events occurring outside the detector — so-called “dirt”
events — are not weighted (next chapter). The desire to correct more than v, CC QE events
motivates the translation of FI*¢ into E'U. (Otherwise, an E'*-based weighting would
suffice.)

The mapping M is perfect for Monte Carlo (from which it is derived), but it is only
approximate for data, as M is built with particular flux, cross section, and detector model
assumptions which are subject to systematic uncertainty. Before describing how we handle
this complication, we must first outline the primary error propagation approach used in the
oscillation analysis. A more complete discussion comes in Chapter 12.

Uncertainties and f(EU)

To turn uncertainties for some component of the simulation (say, 7% production in the
target) into uncertainties on quantities of interest (say, the v, sample’s E ¢ histogram),
we do the following. We first pick a random model variation within the range specified
by the relevant covariance matrix. So for 71 uncertainties, we choose a random Sanford-
Wang parameter set according to the parameters’ 7x7 covariance matrix. The Monte Carlo
variant so produced gives us a predicted EI*¢ distribution for the v, sample (or anything
else) that differs from the default prediction. Repeating this many times creates an ensemble
of prediction histograms from which we build the desired covariance matrix. Other sources
of error yield similar matrices, and all of these are added together.

It is a simple matter to incorporate the correction procedure here: for each Monte Carlo

variant, a new v, CC QE analysis is performed, with f(E%"¢) established from scratch using

14
a new map M and a new histogram {R;}. (Data does not change.) That is, each Monte
Carlo variant is corrected according to its own v, CC QE sample. Correlations between the
v, CC QE and downstream target samples play out variant-by-variant. That is, modifying
the flux parameters (say) induces correlated changes in the two samples, implying that one
sample can be used to improve our knowledge of the other.

Figure 10.10 shows the function f(E'"®) obtained from and used for a handful of Monte
Carlo 7" cross section variants. Figure 10.11 shows the change in the predicted v, — v,
E}*¢ spectrum and its uncertainty before and after the (v, CC QE)-established correction
is applied. Note that this is not the final uncertainty; other covariance matrices get added
to this 7T one.

10.2.3 v, from p decay

The largest background in the oscillation search comes from intrinsic beam v,’s produced
in u decay. The u*’s themselves come from the decays of the same 71’s that provide the
v, flux. Figure 10.12 shows this decay sequence graphically. The resulting v, flux is only
0.4% as large as the related v, flux thanks to the long lifetime of the put.2 However, 0.4%
is quite significant when compared to the LSND oscillation probability.

*Most of the p™’s hit the 50 m absorber before decaying. The fraction that decay in-flight will be

O(,?g—c“;), which for E,=1 GeV is 0(0.008).
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Figure 10.10: f(EU®) for ten Monte Carlo variants in which the 7% Sanford-Wang param-
eters were altered as allowed by their uncertainties. Each f(Ef™®) is used to correct the
Monte Carlo from which it was derived.
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Figure 10.11: Predicted E}* spectrum for v, — v, events (sin? 26=0.003, Am?=1.2 eV?)
after oscillation cuts and with/without (red/blue) the v, CC QE constraint. The error
bands show the uncertainty due to 7 production.
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Figure 10.12: Cartoon of the production of v, from u* decay. We use the observed v,
energy spectrum to improve our knowledge of the 7% spectrum (and, in turn, the y* and
v, spectra) as described in the text.

Because the MiniBooNE detector subtends a small angle when viewed from the decay
region, a v, that reaches the detector must have come from a forward decay of a typically
forward-going 7+. This geometric constraint introduces a strong correlation between the
energy E,, of a detected v, and the energy Er of its parent mt. For perfectly forward
trajectories, the v, has energy

~ 043E,, (10.8)

where my, and m, are the 4 and 7 masses, and where we have neglected terms of O (g—%) .
Figure 10.13 shows the relationship between the reconstructed v, energy EJ*° and the ene;gy
EPUe of the parent 7 in the simulation. The 2D histogram in the figure serves as a new
response matrix M’ that we use to create an inferred E™"¢ spectrum from the observed EI
spectrum, in exact analogy with the f(E!Y) formalism. A weighting function g(EX"®) is
created from the ratio of data and Monte Carlo E'® distributions. We use g(EY"¢) to
weight ve-from-pt events in the simulation according to their parent 7% energies. Few sys-
tematic uncertainties affect the 7™ — u™ — v, portion of the v, prediction, so correcting the
w1 energy spectrum goes a long way toward reducing ve-from-pu* uncertainty. Figure 10.14
shows the resulting shift and error reduction in the predicted E'¢ spectrum for ve-from-pu™

events in the oscillation sample. As before, this shows only one of several error components.

10.2.4 Closing

The (v, CC QE)-based f(EL™"®) and g(E™®) corrections are applied any time a Monte
Carlo prediction (and corresponding systematic uncertainty) is produced. It is as if we have
made flux and/or cross section and/or detector response measurements with this sample
and have adjusted the simulation accordingly. Embedding the measurements within the
error propagation system as we have accounts for the inherent correlated uncertainties.
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Figure 10.13: Row-normalized 2D histogram of E.*¢ vs. E for v, CC QE events built
from the Monte Carlo simulation.
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Figure 10.14: Predicted E™¢ spectrum for ve-from-u* events passing oscillation cuts
with/without (red/blue) the v, CC QE constraint. The error bands show the uncertainty
due to 7t production.
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Chapter 11

Neutral current 7' events

11.1 7 as a v, — v. background

A 70 produced in MiniBooNE quickly decays to two photons,! each of which, upon conver-
sion? to an ete™ pair, produces an electromagnetic shower and corresponding Cherenkov
ring. These y-induced rings are indistinguishable from e-induced ones, so rejection of neutral

current 7¥ events in the v, selection relies on the presence of two distinct rings.

A typical 7° momentum in MiniBooNE is ~0.3 GeV /c. Thus, the yv final state, symmet-
ric in the 70 rest frame, is somewhat boosted in the lab frame. If one photon is significantly
lower in energy than the other, its Cherenkov ring may go unnoticed, resulting in misidentifi-
cation. A detailed two-photon likelihood function and a persistent likelihood maximization
algorithm (§9.6.2) combat the 7° background, the largest v,-induced background in the
oscillation analysis.

A second avenue for misidentification arises when one of the two photons does not
interact within the detector volume. Figure 11.1 shows two dominant scenarios for this:
(1) A neutrino interaction in the dirt surrounding the detector produces a 7°, and one of
the decay photons passes invisibly through the veto region and converts within the fiducial
volume. (2) A 7% produced near the tank wall produces an outward going photon which
exits the detector unnoticed while the remaining photon converts within the fiducial volume.

The cross section for neutral current 7° production is not well known at MiniBooNE
energies (Figure 7.4). Further, the dominant resonant channel is accompanied by a subdom-
inant coherent channel (v C — v C7%) and final state interactions (e.g., charge exchange in
the nucleus) which introduce additional uncertainty. We avoid all this by directly measuring
the inclusive rate of neutral current 7° production in the detector using cleanly identified

70 events.

Yer = 25 nm, B.R.(7° = v7) = 98.8%
%radiation length Xo/p = 52.4 cm
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Figure 11.1: Two scenarios for getting a single v-induced shower from a 7°. (Left) A

neutrino interaction in the dirt can lead to a single photon converting in the tank. (Right)
7% — y7 near the tank wall can result in one photon exiting the tank before interacting,
leaving the other behind.

11.2 7Y event selection

The neutral current 7° selection begins with a basic set of cuts akin to those in the v, CC
QE selection (§10.1) :

e Exactly 1 subevent (no Michel electron expected)
® Nyeto <6

® Niain > 200

e R, <500 cm .

About half the events passing these cuts are v, CC QE interactions in which the Michel
decay was not seen. This CC contamination is easily removed by recognizing the muon-like
appearance of the event via the ratio of the e- and p-hypothesis reconstruction likelihoods:

o log(Le/L,) > 0.05 .

Figure 11.2 shows the log(L./L,,) distribution, with the NC 7% and v, CC QE components

indicated. Note that log(L./L,) naturally separates y from e, not u from 7°. The fact

that 7° events “look more electron like than muon like” (i.e., that they typically have

0 event

log(L./L,) >0) is not necessarily obvious, although it might be expected since a 7
is made up of electron-like rings and since two diffuse rings would not likely mimic a single

sharp muon-like ring.3

31deally, we would just use log(£,0/L,) to remove muons. However, it is advantageous to eliminate as
much background as possible before running any 7° fits, as they are rather CPU intensive.
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Figure 11.2: log(L./L,) distribution for events passing the basic 7° cuts. The two peaks
straddling zero arise from v, CC events (left) and NC 7° events (right). The uncertainty
band represents the square roots of the diagonal elements of the full covariance matrix. The
blue line indicates the location of the cut applied to remove v, CC events.

The desire to remain blind to an oscillation signal motivates two additional cuts. As
we will see in Chapter 12, v, CC QE (signal-like) events reconstruct with lower mass and
with higher log(L./L,0) values than do 7° events, by design. To reduce potential signal v,
events to an acceptably small level, we require:

e M,, > 50 MeV/c?

e log(Le/L0) <0 .
Figure 11.3 shows these cuts graphically along with other cuts that we use later on. Fig-
ures 11.4 and 11.5 compare data and simulation.
11.2.1 Momentum dependent correction

The events that pass this suite of cuts are grouped into nine bins of reconstructed 7°

momentum, as shown in Figure 11.6. In each momentum bin, the number of events satisfying
80 MeV/c? < M., < 200 MeV /c? (11.1)

is measured, and the predicted background contribution is subtracted (from both data and
Monte Carlo). Here, “background” is anything that is not a neutral current event with a
decayed 7.
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Figure 11.3: Monte Carlo 2D distribution of log(L./L,0) and M, for events passing the
70 pre-selection (all cuts through log(L./L,) > 0.05 in the text). The “r? region” includes
the subregion “sideband C”. The “v, region” contains the v,-like events which are excluded
from the 7° sample for blindness reasons. The sideband regions are discussed in Chapter 13.

The simulation is used to construct a 9xX9 momentum smearing matrix U, following
[136]. The n° yields T = {T;} in bins of true 7° momentum are calculated with

T=U"'R (11.2)

where R is the vector of background-subtracted yields { R;} in bins of reconstructed momen-
tum.* The ratios Tz-data /TZMC provide a momentum-dependent weighting that gets applied
to all Monte Carlo 7% events. The previously mentioned Figure 11.6 shows reconstructed
mass distributions before and after the correction. The weighting function itself is plotted
in Figure 11.7. Systematic errors from the background subtraction procedure and from sta-
tistical errors — including effects from the unsmearing process — are indicated in the graph.
More details are available in Ref. [137]. Figure 11.8 shows which 7’s are important as
oscillation backgrounds.

11.2.2 Coherent 7° production (angular distribution)

The reconstructed neutrino energy one calculates for misidentified 7 events depends on
the 7¥ direction. Uncertainty in the 7° angular distribution comes in part from the poorly

“M is built from a Monte Carlo sample large enough to abate noise issues in the unsmearing process [137].
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After basic T cuts and p removal cut
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Figure 11.4: (Top) Data [black points] and Monte Carlo [red histogram and band] distribu-
tions of M,, for events passing the 7° pre-selection. The v, CC QE and NC 7’ components
are indicated. The blue line gives the location of the blindness cut. (Bottom) The analogous

plot for log(Le/L0).
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After basic T cuts and g removal cut and Iog(Le/Ln)<0 cut
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Figure 11.5: This figure differs from Figure 11.4 in that one blindness cut has been applied,
either the log(L./L,0) cut (top) or the M., cut (bottom).
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Figure 11.6: Reconstructed M., distributions for data (black points with statistical er-
ror bars), uncorrected Monte Carlo (dashed histogram), and corrected Monte Carlo with
systematic errors (red boxes) in bins of reconstructed 7 momentum, from 0 GeV/c to

1.5 GeV/c. The blue histogram in each panel shows the Monte Carlo estimated back-
grounds, which are typically quite small.
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Figure 11.7: The NC 7% weighting function. The black line passes through the ratios
Tdata /TMC with linear interpolation in between. The red band gives the size of the (corre-
lated) errors.

known cross section for coherent 7° production:
v+C = v+C+a°. (11.3)

(Coherently produced 7°’s have a more forward peaked angular distribution than resonantly
produced 7’s.) A x? fit to the 2D distribution of My, vs. E;o0(1 — cos 0,0) is carried out to
determine the fraction of 7%’s produced coherently, as described in Ref. [137]. Figure 11.9
shows the result.

11.2.3 Radiative A decay

While the A(1232) resonance typically produces a pion upon decay (A — N), it can also de-
excite electromagnetically (A — N+), creating a nearly irreducible oscillation background.
Uncertainty in the rate of these radiative decays comes from the branching fraction (listed
as 0.0052 — 0.0060 by the PDG [9]) and from the rate of A production. The latter is
constrained by our observed 7V rate, though with an estimated 6% uncertainty due to final
state interactions which can eliminate or create a 7%, and with a 15% uncertainty due to
the 7¥ rate measurement itself and the imperfectly known resonant 7° fraction. Resulting
correlations between the 7n° and radiative A uncertainties are treated in the oscillation
analysis.
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Figure 11.8: (Top) The 7° momentum distribution after v, pre-selection (solid) and full
selection (dashed), as defined in the next chapter. The latter histogram is scaled up by a
factor of 200 for visibility. (Bottom) The v, particle ID cut efficiency for 7° events. This
curve is the ratio of the top two histograms without the 200x scaling.
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Figure 11.9: Determination of the coherent 7° fraction. (Top) E,o(1 — cos,0) distribution
for the best-fit coherent fraction. (Bottom) The fit result when the coherent fraction is fixed
at zero.

11.2.4 Events from outside the tank

The final 7°-related Monte Carlo correction does not use the 7¥ selection at all. Single-y
events from 7%’s produced outside the tank volume (most notably in the dirt) mimic low-
energy electrons. Since the radiation length in our oil is only 50 cm or so, these events
appear near the tank wall with inward trajectories. We construct a quantity Ry (read:
“distance to wall, backward”) which gives the length of active detector that an entering -y
would have to traverse (invisibly) to produce the observed track:

1
Ruh = Re - Ue + [(Re - U — [R + B (11.4)

where R, is the reconstructed e-hypothesis 3-vertex, U, is the reconstructed 3-direction,
and Ry is the radius of the “wall”, defined here as the sphere passing through the PMT
faces: Ry = 550 cm. Figure 11.10 shows the Ry, distribution in data and simulation for
low energy (140 MeV < E, < 280 MeV) and high radius (480 cm < R, < 510 cm) events.
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Figure 11.10: The Riy1, distribution for low-energy, high-radius events. This sample is rich
in dirt events (red histogram), and the dirt normalization is consistent with the data. The
boundary at Riyp, =40 cm is an artifact of the R, < 510 cm in the sample definition.

(These cuts eliminate possible v, signal events, thus preserving blindness while keeping
plenty of dirt events.) Plots similar to this one are used to establish a scaling factor that
gets applied to all Monte Carlo dirt events [138]. The measured factor is 1.00 £ 0.15.
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Chapter 12

Ve selection and signal fit

12.1 Selecting v, CC QE events

We now turn to the v, sample itself. The selection begins with these basic cuts:

e Exactly 1 subevent

Nveto <6

Nmain > 200

R, <500 cm

(endpoint R,) < 488 cm

The first eliminates events with apparent muon decays; the second keeps cosmic ray muons
out and neutrino events in; the third eliminates Michel electrons; and the last two ensure
that the entirety of the event is sufficiently far from the tank wall. (See §10.1.) To complete
the v, pre-selection, we define an EJ* analysis range:

e 475 MeV < E7¢ < 3000 MeV .

The lower E'°° limit was originally 300 MeV!, but the threshold was increased to 475 MeV
for reasons discussed in §13.2.

The pre-selection is followed by three particle identification (PID) cuts which elimi-
nate 7° and untagged muon backgrounds. The PID cuts are based on the kinematics and
maximum likelihoods returned by the event reconstruction algorithm:

o log(Le/Ly) > ag+ a1 Ee + as E?
° log(ﬁe/ﬁﬂ-o) > b+ b1 E. + ngg

o M’Y’Y < co+ ClEe + CQE? .

"below which hadronic propagation uncertainties become difficult to estimate adequately
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The cuts depend quadratically on E,. (the reconstructed lepton energy under an electron
hypothesis). This leaves nine cut coefficients whose values are set such that the estimated
oscillation sensitivity near Am? = 1.0 eV? and sin?20 = 0.004 is maximized.2 Table 12.1
gives the values for the cut coefficients, and Figure 12.1 shows the cuts with representative
Monte Carlo event samples. The figure also includes a graph of the cut efficiencies.
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Figure 12.1: The PID cuts versus F.. The scatter plots in each panel show the signal and
most relevant background component: (blue) v, CC QE [signal], (red) v, CC QE, (green)
NC 7%. The bottom right panel shows the PID selection efficiency for v, CC QE events as
a function of E7*°. Each subsequently lower curve includes cuts from higher curves.

Oscillation sensitivity, formally defined later (§12.5), quantifies how strongly we expect to exclude a
given (sin?20, Am?) point if no signal is present. Sensitivity throughout (sin?26, Am?) space was monitored
during cut optimization, but the test point mentioned here was used whenever a single figure of merit was
needed.

166



log(Le/L)) log(Le/Lro) M,
ag:  1.355x1072 bp: 2.471x1073 co: 3.203x1072 GeV ¢ 2
a;:  3.467x102 GeV~! by: 4.115x10°2% GeV~! cp: 7A417x1073 ¢ 2
as: —8.259x107% GeV 2 by: —2.738%1072 GeV 2 co: 2.738x1072 GeV 1 ¢ 2

Table 12.1: Optimized PID cut coefficients.

The next several plots, unseen prior to our lifting blindness, step through the PID
variables. In each, data and expected background distributions are shown along with an
example signal distribution (best-fit LSND parameters). The Monte Carlo error band gives
the square root of the diagonal elements of the total covariance matrix. Since the PID
cuts are energy dependent, there is no single cut value to indicate on each plot. Instead,
a range is shown by marking the F, = 200 MeV and E, = 1200 MeV cut values. First,
Figure 12.2 shows the log(L./L,) distribution for all events passing the v, pre-selection in
data and Monte Carlo. The example oscillation signal is inflated for visibility in this plot
only. Figure 12.3 shows the M., and log(L./L,0) distributions after the log(L./L,) has
been applied. Finally, Figure 12.4 shows the same two distributions after the application of
each others’ cuts. In all cases, the simulation agrees quite well with data, a statement we
quantify later.

After v, pre-selection

3000
® data
~— Monte Carlo (BG only)
2500
___ LSND-preferred v, v,
(]
2000 enhanced by a factor of 10

1500

1000

events / bin / (5.6E20 POT)

500

o T e = == i 9
9).15 -0.1 -0.05 0 005 01 015 02 0.2 0.3
Iog(Le/Lu)

Figure 12.2: log(L./L,) distribution for events passing the v, CC QE pre-selection. Data
(black points) and Monte Carlo simulation (red histogram with error band) are shown. An
LSND-like oscillation histogram is also shown, scaled up by a factor of 10 for visibility.
log(Le/L,) cut values for E, = 200 MeV and E., = 1200 MeV are indicated by the blue
lines.
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After v, pre-selection and p removal cut
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Figure 12.3: M, and log(L./L,0) distributions after the v, pre-selection and the muon
removal cut. The example oscillation signal has not been enhanced. Otherwise, the plot
conventions are as in Figure 12.2.
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After v, pre-selection and p removal cut and Iog(Le/Ln) cut

120 __ ® data
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Figure 12.4: M, and log(L./L0) distributions after the v, pre-selection, the muon removal
cut, and the opposing PID cut. (That is, the M,, cut is applied on the bottom plot;
log(Le/L,0) on the top.) The example oscillation signal has not been enhanced. Otherwise,
the plot conventions are as in Figure 12.2.

169



Figure 12.5 shows the backgrounds expected after the above cuts along with an example
signal. Without the constraints of the preceding chapters, a v, — v, signal of the size shown
would be swamped by 30 — 50% flux and cross section uncertainties on the backgrounds
beneath it. Table 12.2 gives a more detailed breakdown of the sample’s components.

Stacked backgrounds:
M v
[ U

] s
P 148 : dirt events
2 12F M2 Ny
% 1= B other
20 8:— ---- LSND best-fit signal
“E Am2=1.2 eV?
— sin?(26)=0.003

800 1000 1200 1400
reconstructed E, (MeV)

Figure 12.5: A histogram of E7*° showing the backgrounds (stacked upon one another)
expected after all v, selection cuts, except for the cut on E}°¢ itself. The neutral current
misidentification backgrounds pile up at low E}°° since the outgoing neutrino removes energy
from the event.

v, CC QE 10+ 2

v,e— e 7+2

other v, events 13+5
NC 7 62+ 10

NC A — Ny 20+ 4

dirt events 17+ 3
H—> Ve 132+£10
Kt—u, 71 + 26

K?—v, 23 +7

7t =, 3+1
total background 358 + 35
0.26% Vy = Ve 163 £+ 21
LSND best-fit v, — v, 126 + 16

Table 12.2: Expected numbers of background events in the reconstructed neutrino energy
range 475 MeV < EI*° < 1250 MeV. (This range is used for the “counting” results in Chap-
ter 14.) The systematic errors listed are significantly correlated with one another. Example
numbers of v, — v, oscillation events are shown either assuming P = 0.26% with no spec-
tral distortion or putting sin?20=0.003, Am?=1.2 eV? (LSND).
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12.2 Signal x?

The events that pass the v, cuts are used to fill an E7°° histogram like the one above. The
histogram from the simulation (i.e., the prediction histogram) can have some amount of
v, — Ve signal included. We form a standard x? expression:

X(e) =Y " (di — pile) Vi;' (dj — pj(e)) (12.1)
i

where d; is the height of i-th bin of the data histogram, p; is the height of the i-th bin of the
prediction histogram, o= (sin?26, Am?) controls the amount of oscillation signal present
in the {p;}, and VU_1 is the (i, 7)-th element of the inverse of the covariance matrix V that
describes the uncertainties in the {p;}. We use x?(a) to extract best-fit parameters and to
set confidence intervals in the (sin?20, Am?) plane.

12.3 Forming the covariance matrix V

Uncertainties in the prediction come from several unrelated sources. For example, our
knowledge of K™ production in the target comes from fits to available K production data
while our quite separate knowledge of optical photon Rayleigh scattering in the detector
comes from laboratory measurements with mineral oil. Uncertainties in these are completely
decoupled. However, lack of knowledge about Rayleigh scattering affects (for example) our
ability to measure scintillation production using Michel electrons. Thus, our scintillation
and scattering uncertainties are correlated.

The total covariance matrix V is formed by summing eleven individual covariance ma-

trices, each one having no correlations with the others. The total matrix is

VvV = V7r+ + VK+ + VKO + V7T_ + Vbeam + VvV +
VWO + Vdirt + Vdet + Vqt + VMC .

The component matrices are summarized in Table 12.3.

12.3.1 The first eight component matrices

Consider the matrix V”+, which represents the uncertainty in the N bin heights p = {p;}
due to uncertainties in the 71 production cross section. One can consider p to be the signal
E7*¢ histogram, but it may be any histogram (or, more generally still, any N quantities)
whose prediction depends on our knowledge of 7+ production. As described in §6.1.2, the
7w+ production cross section is parametrized in the beam simulation with a seven-parameter
Sanford-Wang function

d’c

f(paeas) = m )

(12.2)
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matrix uncertainty due to...

5 7T production (Chapter 6)
VK" K+ production (Chapter 6)
A2 K production (Chapter 6)

VT 7~ production (Chapter 6)

Vbeam  heamline modeling and hadron cross sections (Chapter 6)
ve neutrino cross sections (Chapter 7)

v neutral current 7’ rate measurement (Chapter 11)

ydirt neutrino events in the dirt (Chapter 11)

Vet detector modeling and statistical errors (Chapter 8)

vat PMT charge-time correlation (Chapter 8)
vMC finite Monte Carlo statistics

Table 12.3: The component covariance matrices. Note that statistical errors are included
in V9 for reasons described in §12.3.2.

where s is the vector of seven imperfectly known Sanford-Wang parameters. Let § be the
parameters used in the default simulation, and let S be the error matrix representing our
ignorance of the parameter values.

What we don’t do

The full Monte Carlo simulation and analysis chain, which includes the Sanford-Wang

function f(p,#;s) and which produces our prediction histogram p, can be thought of as a

set of functions {p;(s)} for the histogram bin heights {p;}. Commonly, one calculates the
desired matrix elements VZT with

dpi | dp,

Vﬂ.'+ ~ bl

K 277;27; dsm |5 dsn

Smn (12.3)

§

where the derivatives {;f;} are estimated using the simulation. The approximation in

Eq. (12.3) breaks down if the Taylor expansion of p;(s) about § contains nonlinear terms
that are significant in a region about § of size comparable to the standard deviations of s.

What we do do

To avoid this and other issues, we instead propagate the parameter errors S through to
v using a Monte Carlo technique.? Recall that the covariance matrix S corresponds to
a p.d.f. g(s) for the parameters s, where

_ 1 N e T 12.4
o= o (gl 9s 6 -9) (124

3The fact that the function p(s) happens also to involve Monte Carlo is immaterial to the error propa-
gation approach described here.
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and where M is the number of parameters. (M =7 in this example.) We draw K random
parameter sets {s(l),s@), . ,S(K)} according to this p.d.f., and we calculate the bin heights
{pM,p® ... pF)} for each parameter set using our function p(s). We can estimate the
covariances of p due to S from the resulting ensemble:

Vit s 3 (p5 = o) (1 = (01} (12.5)

k=1

where (p;) = = >, pgk) and where K =100 for this analysis.

This is an attractive technique in part because we can weight events from a single high-
statistics Monte Carlo production at § to evaluate the many {p(k)} quickly. To obtain the
k-th 7t Sanford-Wang variation, we weight each event that has a (p-Be)-produced 7+ in

its history by

UL (12.6)

f(p,6;8)
where p and 6 are the initial momentum and angle of the event’s parent 7. The variation so
induced in the downstream histogram p(*) relative to the unweighted version p (or relative
to the average (p)) reflects how much this histogram is affected by the change in 7% cross
section parameters.
The first eight component matrices in Table 12.3 are handled this way. Each matrix has
its own function analogous to f(p,#;s) whose ratios provide the weights of Eq. (12.6).

12.3.2 Vdet

The parameters in the detector simulation affect the nature of events rather than the like-
lihood of their occurring. Thus, V9¢t cannot be calculated through the weighting of events
in a single large Monte Carlo run. Fresh events must be generated for each random param-
eter set s(*). With the weighting method, finite Monte Carlo statistics play a small role
due to the cancellation of fluctuations.* For V4¢' though, each parameter set gets a new
statistically independent event sample, and one must run an impractically large number of
Monte Carlo events to have sufficiently low noise in the differences of Eq. (12.5).

To get around this, each of our K =64 detector model variants is generated with a
number of events equal to that expected in data. The k-th parameter set, then, yields
a histogram p®) that differs from the default histogram not only because the detector
model parameters have changed (éi—)S(k)) but also because the histogram has statistical
fluctuations. However, these fluctuations are the same size as those expected in data. If we
calculate covariances from the K-fold ensemble using

K
1 A ~
Vit m 2 30— pi8) (0~ pi®)) (12.7)
k=1

4The Monte Carlo predictions enter Eq. (12.5) only in differences: (pgk) — (pi)). Statistical fluctuations

in p; tend to cancel in these differences since the same underlying events provide both terms.
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we get a matrix V9¢' that represents the combination of the detector systematic error matrix
and the statistical error matrix. The statistical contribution should be equal to Vz-z-tat = Pi0ij,
a fact we can use for diagnostics on V9. Since V9 comes with the statistical error built
in, we must not add a separate V5% to the total matrix V.

Note that the covariances calculated in Eq. (12.7) are taken about the histogram p(§)
rather than about the ensemble average as it is in Eq. (12.5). As described in §8.7, the p.d.f.
for the detector model parameters was created without reference to the default parameter
set 8. Thus, the ensemble {p¥)} could, in principle, be distributed about a point somewhat
removed from the prediction p(§) which actually appears in the x? of Eq. (12.1). The
form of Eq. (12.7) ensures that any such displacement enlarges the estimation of the error
correspondingly. (In practice, no large displacement is seen, mostly because V¢! ~ Vstat,
That is, detector systematics have a small effect on the analysis.)

12.3.3 V&

The correlation between a PMT’s charge and its time is modeled (§8.4), but its imple-
mentation does not lend itself to the above error propagation methods. We thus form a
separate matrix V9 to handle our uncertainty in this phenomenon. We begin with a con-
servative variant of the charge-time correlation model to produce a prediction histogram
p%. We could calculate differences between this and the default prediction p to estimate
the covariance V;}t:

V;?t ~ (p?t —ﬁi) (;o§‘t - ﬁj) . (12.8)

However, as with V9¢*, CPU time makes it difficult to overcome the effect of Monte Carlo

statistical fluctuations. So, we rewrite the above as

qt qt

P . R p; R
Vit = | SEpi—i | | -0 - B
“ (pi A T

= [n(Ei) = 1) [n(E;) — 1] pip; (12.9)

qt
where we have introduced n(E;) = ’;;' whose notation reminds us that our observables {p;}

i

are, for the signal extraction, consecutive bins of an energy histogram. If we could run an
infinite amount of Monte Carlo, 7(E) would be a smooth and slowly varying function of E
differing from n=1 as the model variant dictated. Since we have finite Monte Carlo statistics,
n(E) actually exhibits bin-to-bin fluctuations which we can remove by acknowledging the
underlying smoothness. A polynomial, whose degree is sufficiently large to encapsulate the
systematic trends in n(E) while still being much smaller than the number of elements (bins)
of p, is fitted to n(E) to form 7'(E), giving us our final expression

Vi = [f(E) - 1] [0 (B;) - 1] pip; - (12.10)

Eq. (12.10) enjoys the same reduction in sensitivity to jitter as does the weighting case
above. V@ is the only matrix that uses this smoothing technique.
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12.3.4 VMC

This diagonal matrix provides the statistical uncertainty due to the finite number of events
used to form the default prediction p. For non-signal events originating within the detector,
the Monte Carlo sample is 7.9x larger than the data sample. For events from the dirt: 4.1x.
For signal events: 50x (if Ppg~0.26%).

12.4 Signal extraction

12.4.1 Best-fit oscillation parameters

The oscillation parameters that best describe the data can be obtained by minimizing the
x? in Eq. (12.1). We use the MIGRAD method of Minuit [133] to find the minimum, but
we must defend against settling into a non-global minimum.> This possibility stems from
the oscillatory nature of P(v, — v,); recalling Eq. (1.25) :

P(v, — ve) = sin?20 sin®[kAm?*(L/E)] .

The period of oscillation of the x? surface along Am? can be estimated from the argument
of the second sinusoid:

N T <§> km eV’
am* = 127\ L/ Gevdl
~ 3eVZ/ct, (12.11)
where we’ve used <%> ~ 1.2 GeV/km. This ~3 eV?/c* periodic structure can be seen in
the LSND allowed regions of Figure 1.8.
To find the global minimum, we seed Minuit with parameters from each x? valley in
turn (up to the limit of our Am? resolving power), reporting in the end the best minimum
found from the many Minuit calls. A more precise description:

1. Begin with Am? = 0.1 eV?/c* (which is within the first period).
2. Find the sin?26 value that minimizes x? at this fixed Am?2.

3. Seed Minuit with the resulting pair of parameters and run MIGRAD to find a mini-
mum. Both parameters are allowed to vary within the physical plane.%

4. Increase Am? by 1 eV?/c* and repeat (2) and (3), recording the new x? minimum
and its parameters.

5. Repeat (4) until Am? > 30 eV?/c*.

6. Return the best parameters (lowest x2) recorded throughout the process.

SMIGRAD is efficient at finding the nearest local minimum, but it has little ability to recognize the
presence of multiple minima.
5Am? >0 and 0 <sin?26 < 1
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This procedure gives MIGRAD several shots at each valley in the x? surface. The 1 eV?/c*
steps are smaller than the ~3 eV? /c* periodicity so that one need not worry about the
phase of the valley structure.

The covariance matrix V is held fixed during the above six steps. Once the best param-
eters are found, the matrix is updated to account for the influence of any signal, and the
full procedure is iterated. (The first pass uses a no-signal matrix.) These matrix iterations
end when the minimum x? changes by less than 0.1 from one iteration to the next. This
condition is usually satisfied going from the second to the third fit. That is, the second fit
is usually sufficient, but a third is required to confirm convergence.

12.4.2 Global scan confidence intervals

Confidence intervals in the (sin?20, Am?) plane can be established through the Ax? surface

Ax* () = x*(@) = Xpest - (12.12)

where xZ.. =X*(Qtbest) is the minimum just found and where x?(a) is evaluated using
Eq. (12.1).7 If this surface is parabolic and the parameters are unbounded (a common sce-
nario), a contour of constant Ax?(a) = Ax? defines a confidence interval whose confidence
level (C.L.) ¢ depends on the constant Ax? and on the number of free parameters in the
problem. Tables of Ax? are available in the literature [9]. For two free parameters, the
¢=90% C.L. contour corresponds to Ayx2=4.61.

However, we have a non-parabolic Ax?(a) surface and bounded parameters. In general,
this means that Ax? no longer has a fixed value for a given c. Rather, the contour c is
formed by the locus of points satisfying

Axi(a) = Axi(a) (12.13)

where the constant above has been replaced by the surface Ax%(a). Often, Ax?(a) is
near the standard (constant) tabulated value. In particular, deviations are insignificant
when one is interested in confidence contours that are far from parameter boundaries or
that are isolated in a locally parabolic region of the Ax?(c) surface. Generally, though,
one needs the complete “cutoff” surface Ax?(a) for all parameters a and for each desired
confidence level c. The cutoff at a can be determined by performing many simulated
experiments with signal a;yye = o and by examining the resulting distribution of Ax?(rue)
from Eq. (12.12). There exists some ¢ for which a fraction ¢ of the obtained Ax?(crue)
values satisfies Ax?(Qurue) < €. Tt follows, then, that Ax?(aurue) =¢&.

The a = ay, case

As an example of this exercise, we calculate Ax?(aupu). Figure 12.6 shows the Ax?(ayun)
distribution obtained from an ensemble of simulated signal-free experiments (Qrye = Qpun)-

"We use the covariance matrix from the final iteration.
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Figure 12.6: Values of Ax?(c,,) obtained in 34 400 fake signal-free experiments. 90% of
experiments have Ax?(anun) < 3.20. 95.7% of experiments have Ax?(omun) < 4.61. (4.61
is the expected 90% cutoff for a two-parameter unbounded parabolic problem.)

Naively, we would expect 90% of the Ayx? values to satisfy Ax? <4.61. In fact, 95.7% of
simulated experiments satisfy the condition. Table 12.4 presents various integrals of the
distribution. We find that AX%:QO% (aqun) = 3-20.

In this ay,y case, the cutoff deviation is due primarily to the parameter bounds. An
experiment whose E™°° histogram fits well to an unphysical (sin?26 < 0) scenario could lead
to a lower x2.,, were it allowed, but it gets stopped at the sin?20=0 boundary. Ax2=0 is
thus over-represented (since o, < sin®260=0).

The above procedure [139] must be repeated throughout parameter space to establish the

simple required  coverage using

desired C.L. Ax?(apun) Ax%(opan)  simple cutoff
68.27% 2.30 1.23 83.1(2)%
90.00% 4.61 3.20 95.7(1)%
99.00% 9.21 7.11 99.75(3)%
99.73% 11.83 9.08 99.96(1)%

Table 12.4: Properties of the Ax? distribution (Figure 12.6) obtained from an ensemble of
fake signal-free experiments (Qrye=0tnyn)- For simple problems with two fitted parameters,
the Ax? cutoffs listed in the 2°9 column yield the confidence levels listed in the 15t. For our
actual x? function and parameter bounds, the desired confidence levels are reached at oy
by using the cutoffs listed in the 3'¢ column. The last column shows the coverage actually
obtained with the simple cutoff values. (Statistical uncertainty is indicated parenthetically.)
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complete cutoff surface. Because this is quite CPU intensive, many oscillation experiments
forgo it, opting instead to use standard Ax? values. We do the same, except when quoting
acceptance/rejection of the null hypothesis.

The a # ag, cases

To verify that the standard Ax? values give acceptably accurate coverage away from o,
we construct an approximate Ax?(a) cutoff surface for c=90%. For each of eighty-one
signals (nine values of sin?20 crossed with nine values of Am?), O(1000) experiments are
simulated. Each experiment’s N-bin E7°¢ histogram is created by drawing a vector p of bin
heights from the p.d.f.

6) = —— o (3 -9 Vo)) | (12,19
(2m)¥V])?

where p is the default Monte Carlo prediction for the bin heights (assuming signal ouye)
and V is the total covariance matrix for p. The resulting histogram is treated as data, and
the fit procedure of §12.4.1 is performed. Ax?(ctrue) is recorded.

As before, we set szzgo% (ttrue) such that 90% of experiments satisfy Ax?(otyrue) <
AX(Q;ZQO% (@ttrue). Doing this for each of the 9x9 values of airye yields the surface Axgzgﬂ% (o)
shown in the left panel of Figure 12.7. Because CPU constraints keep us from producing
a sufficiently smooth surface and because we need a continuous function in order to eval-
uate Ax?_g () for any o, we fit the 81 points to an analytic function which, frankly,
doesn’t work all that well at the higher Am? values but which will suffice for our validation
purposes. This smoothed surface is shown in the right panel of Figure 12.7. We will see
in Chapter 14 that this surface gives similar contours to those obtained with the standard
90% cutoff value.

12.4.3 Raster scan confidence intervals

The global scan procedure we have been discussing is just one of several approaches for
presenting a neutrino oscillation result. While it is used by some experiments, still others
report confidence intervals using a “raster scan” method. A raster scan contour represents
either a two-sided range of allowed sin?26 values as a function of Am? or a one-sided upper
limit on sin®260 as a function of Am?. MiniBooNE has historically calculated sensitivity
contours with a one-sided raster scan, and the oscillation results in this work are presented
using this method, although we also show global scan contours (Chapter 14). The raster
scan procedure is as follows.

At a fixed Am?2, the sin?20 value that minimizes x? is found iteratively, updating the
covariance matrix V to account for any fitted signal after each iteration. Using the best-fit
mixing angle sin?26,es; and the final covariance matrix, we find sin?26y;,;; such that

X(510° 2050050, Am?) — X (80?2, Am?) = 1.64 (12.15)
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Figure 12.7: (Left) 90% C.L. Ax? cutoffs determined at eighty-one points in parameter
space. (Right) The cutoffs evaluated using the fitted analytic function.

and sin%20;mi; > sin?20pes;. This is repeated at all Am? values. The union of (sin?20ymi,
Am?) pairs forms the 90% C.L. upper limit contour for sin?26.%

12.5 Oscillation sensitivity

A natural, if somewhat cumbersome, definition of sensitivity is put forth in Ref. [139]: the
sin’26 sensitivity at Am? is given by the ensemble average of sin®20imic values obtained
at that Am? from a collection of simulated experiments.” We use an alternate sensitivity
definition'® which results in similar contours with much less computational overhead: the
sensitivity contour is that contour obtained from a single fake experiment in which the data
exactly matches the null hypothesis prediction.'!

Figure 12.8 shows the 90% sensitivity contour for the analysis. By removing individual
component matrices (e.g., V”+), we can explore how the sensitivity might improve if effort
were put into reducing each error source. The four panels of Figures 12.9 and 12.10 show
the results of such an exercise. Some comments:

e Eliminating K+ production uncertainties leads to the largest single improvement,
followed by cross section uncertainties.

e No other single systematic component provides noticeable gain when removed.

8Gince we are working at fixed Am? values, the x(sin?26) function is parabolic, so we do not face that
issue. Effects from the sin26 boundaries are found to be minimal for the contours we eventually form, so
the standard cutoff of 1.64 is used.
9This is not well-defined for global scan contours which may be zero- or double-valued for some Am?.
0likely used by other experiments, though this is often impossible to tell from journal articles
"This definition is compatible with a global scan.
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e Eliminating all systematic errors together (a rather unrealistic scenario) improves
the sensitivity considerably more than any single component does. (Consider, for
example, the v.-from-K* background. Reducing the v, flux uncertainty leaves large
cross section uncertainties, and vice versa. One must reduce both to see significant
gains.)

e Removing the statistical error is as beneficial as removing all systematic error.!?:13

(This does not include the secondary benefit of eliminating statistical errors in the 79
and v, constraint procedures.)

102 E T TTTTT T T T TTTTT ‘ T T TTTT \‘ T T T TT \;
E ; sin?(26) upper limit E
B _’ — MiniBooNE 90% C.L. sensitivity
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10° 102 10™ 1
sin?(26)

Figure 12.8: The 90% C.L. sensitivity contour. The LSND allowed region is shown for
context.

28ince we cannot remove statistical errors without also removing detector model errors, the “syst. errors
only” case excludes both, via V9¢® =(. However, we can approximate the converse situation to show that
statistical errors overwhelm the detector errors. (See next note.)

13To turn off only detector model errors, we cannot just set V9¢* =0 since that also removes statistical
errors. Instead, we replace VI with V%2t a swap that has the effect of subtracting out and then adding
back in a significant contribution to V. Since the Monte Carlo-based V9 provides only an estimate of
VSt the cancellation is not perfect. In our case, the resulting V¢ < V53¢ contour falls slightly to the
right of the all-errors contour. Figure 12.16 is related to this diagnostic complexity.
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Figure 12.9: (Part 1 of 2.) 90% C.L. sensitivity contours with various error sources removed.
In the top panel: (solid black) all errors; (dashed black) statistical errors only [N.B. foot-
note 12]; (red) systematic errors only; (blue) no errors from finite Monte Carlo statistics.
In the bottom panel: (solid black) all errors; (dashed black) no ™ production uncertainty
[hidden behind the “all errors” contour]; (red) no K* production uncertainty; (blue) no
“beamline” errors [nearly hidden].
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Figure 12.10: (Part 2 of 2.) 90% C.L. sensitivity contours with various error sources re-
moved. In the top panel: (solid black) all errors; (dashed black) no detector model uncer-
tainties [N.B. footnote 13]; (red) no charge/time correlation uncertainty; (blue) no cross
section uncertainties. In the bottom panel: all contours lie on top of one another. Included
are contours for: all errors; no 7 rate uncertainty; no K% production uncertainty; no 7~
production uncertainty; no dirt normalization uncertainty.
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Counting analysis

A more straightforward signal test, less sensitive than fitting the energy spectrum, is simply
to count the number of v, candidate events and to compare this with the background
expectation. We present counting results in Chapter 14 using events that fall in the energy
range 475 MeV < E7*° < 1250 MeV. The upper E*° limit is below than that used in
the energy fit (3000 MeV) since negligible oscillation signal can appear above 1250 MeV.
So while higher energy events provide normalization information in the energy fit, they
contribute only noise to the counting analysis. Figure 12.11 shows the oscillation sensitivity
for the counting analysis.

10 T T 1T Ill.l-v*l!\\\\‘

90% C.L. sensitivities

— energy fit
---- counting

|am?| (eV/c?)
H

[ LsND 90% C.L.
. [] LsND 99% C.L.
10°F ]

| 1 1 1| ‘ | | | ‘
10° 10
sin?(26)

Figure 12.11: 90% C.L. sensitivity contours for the E[*°-fit and counting analyses.

12.6 Testing the fit

Simulated experiments, like those that provide the Ax? surface in Figure 12.7, can also be
used to test the signal extraction procedure. We show in Figure 12.12 the distribution of
Ax?(atirue) obtained from 86 600 experiments whose true signals are drawn from all over
parameter space, up to Am2~12 eV2. If fits were getting trapped in non-global minima,
x?(@ttrue) would occasionally be lower than x2,... The lack of any negative Ax?(ctyrye) values
suggests that this does not occur. A prototype minimization algorithm, which involved only
a single Minuit call, indeed gave many negative values.
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Figure 12.12: Ax?(true) = X*(Qttrue) — X%est for 86 600 fake experiments with signal. No
negative values are seen, supporting the claim that the x? minimization algorithm does not
get trapped in non-global minima. (The left edge of the first occupied bin has been set to
—1077 to absorb floating-point effects.)

Figure 12.13 shows the best-fit parameters extracted from hundreds of experiments at
three different true signal points. Systematic errors were turned off both in the fit and in the
fake data creation. The scattered points distribute themselves about the true signal points
in the expected fashion. The corresponding X%est distributions are also well-behaved, as
explained in the caption. Figure 12.14 shows analogous graphs made with both statistical

and systematic uncertainties.

In these exercises, the generation of fake data and the calculation of x? both assume a
given covariance matrix V. Thus, while they represent strong tests of the fit machinery,
these studies cannot validate the construction of the covariance matrix itself. (Recall that
the fake EI*° spectra above are created from the p.d.f. in Eq. (12.14).) To fill this gap,
we also performed fits on fake data built by directly varying the Monte Carlo simulation
according to underlying parameter uncertainties. That is, the parameters controlling the
simulation (affecting secondary meson production, neutrino cross sections, the detector
model, etc.) were simultaneously adjusted in a fashion dictated by the uncertainties on
each. The resulting fake data, which sometimes included signal, were then fit using a
covariance matrix formed with the full analysis infrastructure, including new v, CC QE
constraints obtained from corresponding fake v, CC QE samples, per Chapter 10. As
Figure 12.15 shows, the x? values from these “fully faked” experiments are distributed
as expected, indicating that our error propagation procedure indeed yields the intended

covariance matrix.
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Figure 12.13: 300 fake experiments for three different true signal points, no systematic
errors. (Left column) The true parameter values are indicated with red circles. The blue
LSND allowed regions are included for context. The scattered black points mark the best-fit
parameters extracted in the experiments. The valleys of the x? surface are echoed in the
scatter plots. (Right column) Histograms of X%est. The smooth curve shows the x? p.d.f.
for 6 degrees of freedom, P(x?; Ngor=6) (mean=6, RMS=3.5), scaled to the number of
experiments. (Note: 8 bin fit, 2 free parameters.) As the best-fit points in the top two rows
typically fall within a single valley, we expect non-parabolic features of the y? surface to
play a small role. Thus, the X%est distributions follows the naive P(x?; Ngor=6) expectation
closely. In the bottom row, x? “valley hopping” is prevalent and gives the fit additional
freedom to lower X%est. Studies like these were performed throughout parameter space with
consistent results.
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Figure 12.14: 300 fake experiments for three true signal points, all errors included. See
Figure 12.13 for descriptions of the graphs. In addition to the nuances mentioned there,
large systematic errors (especially at high energies) result in a deflated average X%est’ as the
generated data histograms were not allowed to have negative bin contents.
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Figure 12.15: (Top row) Fully faked data, no signal. The left panel shows the distribution
of x? between fake data and a background-only prediction (no fit). The overlayed curve
is proportional to P(x?; Ngor=8). The right panel shows xZ .., along with P(x?; Ngor=6).
(Bottom row) Various signals are now present in the fake data. Direct comparisons of data
and the background-only prediction (left) should give large x? values, as the null hypothesis
is a poor description. The distribution of X2best’ though, should be (and is) a close match
to the overlayed x? function. These studies are CPU limited, and only a few dozen were
performed. Relatedly, the seventy-one experiments shown were generated via reweighting
from only eleven base Monte Carlo samples. Therefore, only eleven statistical and detector
model variants are represented. All other uncertainty components were given independent
parameter draws for each experiment.
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A final check: Recall that the component matrix V¢ is unique in that it includes the
statistical error estimate and that it is built from K= 64 independent, data-sized Monte
Carlo samples rather than from a single large sample via weighting. For large covariance
matrices (say, for an Npj; =30 histogram), impractically large values of K are needed to
combat noise in V9¢', For fixed K, one must choose a sufficiently small Ny, such that
x? shows the proper behavior. We use Npin=8 in this analysis. The above “fully faked”
experiments demonstrate that our y? is well-behaved, and Figure 12.16 demonstrates that
any residual noise in the covariance matrix has no significant impact on the contours derived
from the Ax? surface. Studies with Ny, =16 suggest that little oscillation sensitivity would
be gained by increasing K (to allow for higher Ny, ).
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Figure 12.16: 90% C.L. sensitivity contours obtained using thirty-two detector model vari-
ants (red), a different thirty-two variants (blue), and all sixty-four variants (black). The
differences are small, indicating that the gross shape of the contour is not driven by noise
in the covariance matrix.
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Chapter 13
Veritying the predictions

Event distributions produced using the tuned Monte Carlo simulation should agree with
corresponding distributions from data within the assigned uncertainties. We would like to
confirm, while maintaining blindness, that this data/simulation agreement actually occurs.

13.1 Non-signal samples

We begin by defining five event samples from which we create histograms that probe a range
of analysis components, including y and e modeling and reconstruction; 7° production and
misidentification; nuclear effects; error estimation; and the x? procedure itself. Aspects of
the analysis that cannot be readily tested while blind (for example, A — N~ and low-to-mid
energy v, rates) are addressed indirectly in the next section.

v, CC QE

The first test sample is formed using the v, CC QE selection of Chapter 10. The muons in
these events allow for checks of lepton reconstruction in the presence of recoil hadrons; muon
particle ID; and quasi-elastic kinematic distributions. The Michel electrons provide checks
of low energy electron modeling and reconstruction. For distributions directly involved in
Monte Carlo tuning (e.g., @?), the comparisons we make here serve to quantify the success
of that tuning.

High energy v,

High energy events passing the v, selection are primarily intrinsic beam v,’s. Signal v,’s
appear at lower energy. We define a high energy v, sample consisting of all events that
satisfy both EJ*¢ > 1.5 GeV and the v, selection (Chapter 12). The expected contributions
from (ve-from-K) : (ve-from-p) : (NC 7°) are in proportion 1.7 : 1 : 1. The total number of
events in small, but one could observe large v, or 7° rate discrepancies, if present.
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Sideband A

Three “sidebands” are created using the v, selection with modified 7° cuts. For Sideband
A, the standard log(Le/L0) cut is dropped and these two cuts are added:

e log(L./L0) < —0.01
e My, <50 MeV/c?.

Figure 11.3 shows how sideband A relates to other samples. Sideband A, which consists
almost entirely of 7° events, is small but can potentially reveal 7° misidentification dis-
crepancies. (Note that these events are themselves partially misidentified, having low re-
constructed masses.) When we compare M., histograms in this sample, we leave out the
M,y <50 MeV /c? sideband cut, letting the E.-dependent M., cut from the v, selection
shape the distribution. (This is indicated with the label A’ in tables and figures.)
Sideband B
For Sideband B, the standard M., cut is dropped and these are added:

e log(L./L0) >0

e M,, > 50 MeV/c? .
Figure 11.3 shows this region graphically. When we examine log(L./L,0), the label B is
used, indicating that the log(L./L o) sideband cut is not applied (in analogy with A’).
Sideband C
Sideband C replaces both 70 cuts in the v, selection with:

e —0.09 < log(Le/L0) <0

e 50 MeV/c?> < M, <100 MeV/c? .

Again, see Figure 11.3. The boundaries are set such that the number of events in sideband
C is similar to the number of events in the signal region. This provides a check of our
statistical error propagation methods.

13.1.1 The comparisons

Over the next several pages we show the plots that compare prediction and data in the
above samples. Each plot includes:

e The data as solid points.
e The Monte Carlo prediction as a red histogram.

e An error band. The half-width of the error band at bin 7 is v/V};, where V is the full

covariance matrix.
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e X2, calculated with the full covariance matrix. This quantifies the data/simulation
agreement. (The error band alone is insufficient since correlations can be important.)

e The x? cumulative probability: p:f;; P(n)dn, where P(n) is the x? p.d.f.

Table 13.1 provides a summary of the comparisons. The pages that follow show the plots.
All predictions and covariance matrices are created following the procedure outlined in
Chapter 12 and used for the signal fit itself, with the exception that the detector model
variants (§12.3.2) in the v, CC QE sample were smoothed via the procedure described in
§12.3.3.1

The agreement is excellent, and the cumulative y? probabilities are well distributed
from zero to one (Figure 13.1). The lowest p among the forty-six calculated is 0.004 for the
U, distribution in sideband B. This distribution’s agreement was deemed tolerable, since
the U, distributions in other samples give no cause for alarm, since 250-to-1 odds are not
exceedingly long given forty-six trials, and since close inspection of the distribution and its
errors offered no reasons to change anything.

In closing, we note that the particular list of quantities tested in each sample is largely
historical, as the samples were created for a variety of original purposes.

1This is necessary if we are to compare more than eight bins or so, something we would like to do with the
high-statistics v, CC QE sample. We have too few detector model variants to estimate covariance matrices
for histograms much larger than ~8 bins. Smoothing mitigates this issue, as it approximately eliminates the
statistical contribution to V9¢* which we can replace by adding in a traditionally calculated Vst2t. Note
that all other x? comparisons, either in other test samples or in the signal extraction, use nine or fewer bins
(usually eight), for which our ensemble of detector model variants is sufficiently large. (See §12.6.)
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sample quantity x>  Naot P°4)

v, CC QE Michel E 19.1 32 0.96
} E 40.0 33 0.19
Michel R? 43.0 37 0.23

R® 344 37 0.59

log(Le/L,) 52.0 50 0.40

log(Le/Ly) (e-like portion) 11.1 21 0.96

Q? 49.8 50 0.48

Erec 28.3 29 0.50

line cut residual 37.4 50 0.91

U, 62.1 50 0.12

U, 53.3 50 0.35

) U, 475 50 0.57
High energy ve E;*° 0.5 5 0.99
} U. 2.8 5 0.74
log(Le/Ly) 8.3 6 0.22

log(Le/L0) 7.8 5 0.17

) M, 5.1 6 0.54
Sideband A E;f°¢ 4.9 8 0.77
log(Le/Ly) 2.6 8 0.96

) log(Le/L0) 6.7 9 0.67

(A" M,, 5.7 8 0.69

) E 8.6 7 0.28

U, 15.6 8 0.05

U, 7.6 8 0.47

) U, 3.4 8 0.91
Sideband B Erec 5.8 8 0.67
) log(Le/LL) 5.0 8 0.76

(B") log(Le/L0) 10.8 8 0.21

) M,, 6.3 6 0.39

E 4.8 7 0.69

U, 22.6 8 0.00

U, 7.9 8 0.45

) U. 3.3 8 0.92
Sideband C R? 5.1 8 0.75
. (endpoint R,)? 8.4 8 0.39

Erec 7.3 8 0.51

E 8.1 7 0.33

X 1.8 8 0.99

Y 5.2 8 0.73

VA 5.8 8 0.67

U, 4.0 8 0.86

U, 15.8 8 0.04

U, 44 8 0.82

log(Le/L,) 5.9 8 0.66

log(Le/L0) 1.6 4 0.80

M,, 1.8 4 0.77

Table 13.1: Summary of comparisons between data and simulation. The columns in the
table indicate (1) the test sample, (2) the variable being examined, (3) the x? quantifying the
agreement, (4) the number of degrees of freedom in the comparison, and (5) the cumulative
x? probability.
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Figure 13.1: Distribution of cumulative y? probabilities. Independent draws from a 2
distribution would yield a flat histogram here. Our situation involves correlated errors
and non-independent quantities, so deviations from flat are possible. Additionally, the
smoothing that facilitates the many-bin comparisons in the v, CC QE sample results in
slightly overestimated V¢! matrices, unavoidably biasing p upward for that sample. (An
alternative is to compare fewer bins. This was done, and good data/simulation agreement
persisted.)
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v, CC QE plots
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Figure 13.2: v, CC QE plots (Part 1).
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Figure 13.4: v, CC QE plots (Part 3).



High energy v, plots
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Figure 13.5: High energy v, plots (Part 1).
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Figure 13.7: Sideband A plots (Part 1).
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13.2 Lifting blindness

We can perform similar checks with the v, sample, but we must consider the possibility
of an oscillation signal. We find the best-fit oscillation parameter set Qpes; by minimizing
the E™¢ x2, per §12.4.1. However, neither the minimum x? nor the parameter values are
revealed. Rather, we use the unseen best-fit parameters (which may correspond to a small,
large, or non-existent signal) to make data/simulation comparisons, like those above, with
the candidate v, events. If our simulation correctly predicts key distributions — accounting
for any oscillation signal via apest — then we can have confidence continuing the unblinding
process.?

Table 13.2 shows the x? values obtained with an E*¢ =300 MeV energy threshold.
While most of the distributions show good agreement, E has a cumulative x? probability
of only 1%. Since E and EI¢ are closely related, this low probability suggests that the
yet-to-be-seen x? from the signal fit might also be poor.3

quantity 2 P(OA3H+)
R3 2.5 0.96
(endpoint R,)® 2.7 0.95
E 20.2 0.01
X 3.8 0.87
Y 5.4 0.71
7 5.2 0.74
U, 5.1 0.74
U, 55 071
U, 5.6 0.70

log(Le/L,) 13.7  0.09
log(Le/L0) 6.7 0.57
M, 33 091

Table 13.2: First data/simulation comparisons from the v, sample, accounting for the best-
fit signal. Ngof =8 for all rows.

After an initial review, nothing amiss was found in background estimates or system-
atic error assessments. To aid the investigation, the following measure of data/simulation
agreement was released for each bin of the F histogram:

5 — |di — pi(tbest)|
2 \/‘T ’

where d; is the height of the i-th E-histogram bin in data, p; is the same for the simulation

(13.1)

2Before performing this blind fit and making the subsequent comparisons, we tested the code on 10%
of the available neutrino data. While this 10% sample is statistics limited and, thus, provides minimial
analysis validation, it helps verify our ability to extract best-fit parameters and to perform data/simulation
comparisons while staying signal-blind..

3Indeed, it was revealed some weeks later: xf.esi/Naot = 15.5/6, p=1.7%.
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assuming signal aupegt, and Vj; is the no-signal covariance matrix. ¢; gives the magnitude of
the discrepancy in bin ¢ in units of the (no-signal) standard error for that bin. Figure 13.15
shows {J;}. Because bin-to-bin correlations are important, the individual ¢;’s are of limited
use. Applying the full covariance matrix to the discrepancies, however, reveals that bin 2
(E ~ 300 MeV) causes the most trouble, increasing x2 by 5 — 11 units (recall Ngor=8) in
the presence of any of the other seven discrepancies. Noting that bin 1 has few events and
cannot tell us much*, our best lead after this study was only that low energy background
estimates might be involved in the data/simulation disagreement. (See Appendix D for the
present state of knowledge.)

It was found that raising the E}¢ threshold as high as 500 MeV had little impact on
the v, — v, oscillation sensitivity. Figure 13.16 compares the oscillation sensitivities for
E7F¢ > 300 MeV and E;° > 475 MeV analysis cuts. The similarity in the contours implies
that events below 475 MeV add negligible signal information in the fit. Given this, we
increased the analysis threshold from 300 MeV to 475 MeV, and we repeated the blind signal
fit and subsequent data/simulation comparisons. Table 13.3 shows the results. Given the
good agreement (including E, with p =28%), we proceeded by viewing the signal fit’s xZ .,
where this agreement continued (X%est /Ngot =0.6/6, p=99%). We then lifted blindness
completely and viewed the oscillation result.

=N
o o w

=
o

+ deviation (No, diagonal terms only)
o
o
IIII|IIII IIII|IIII

o
o

-0.5
B0 St bbb bbbl - ettt
1.5
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Figure 13.15: A view of the {d;}. Since the signs of the discrepancies are not known, d; is
plotted symmetrically about zero.

4The E%¢ threshold decimates this first E bin, and its statistical error is therefore large.
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Figure 13.16: Oscillation sensitivity for two different E}°° thresholds.

quantity 2 P(x*4)
R3 9.0 0.34
(endpoint R,)® 6.4  0.60
E 8.7  0.28
X 8.0  0.43
Y 9.0 0.34
Z 2.9 094
Uy 8.5  0.38
Uy 6.9  0.54
U, 7.6 047

log(Le/L)) 7.2 0.51
log(Le/Lr0) 9.7  0.21

M., 0.8  1.00
B 0.6  0.99

Table 13.3: Second data/simulation comparisons from the v, sample, using a cut of
E™° > 475 MeV. The E'*° fit’s x? is also shown.
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Chapter 14

Results

Below are the findings from the v, — v, oscillation search.

14.1 Summary

The number of v, candidate events in the 475 MeV < EJ*¢ < 1250 MeV range is

observed: 380
expected background: 358 & 19(stat.) &= 35(syst.)

The excess of (380—358) =22 events is insignificant (0.550). Figure 14.1 shows the EI*
distribution of the v, candidate events along with the background prediction and an example
LSND-sized signal. The data are well-described by the background-only prediction, with
X% /Naot = 1.93/8 (p=98%). Figure 14.2 shows the the best-fit EX spectrum, along with a
breakdown of the expected backgrounds. The fit gives:

best-fit parameters: (0.0011,4.1 eV?)

Xbest/Ndot: 0.99/6
Ax?(opan): 0.83 — 60% C.L.

The last line says that signal-free experiments will give Ax?(aumun) <0.83 60% of the time
(8§12.4.2). Equivalently, the null hypothesis is rejected at only the 60% confidence level.
The best-fit and null parameters, then, provide comparably good descriptions of the data.
Table 14.1 discusses the unusually low values of x2.

Figure 14.3 shows the 90% C.L. sin?26 upper limit obtained as described in §12.4.3. The
LSND 90% and 99% C.L. allowed regions are almost entirely excluded at 90% C.L.
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Figure 14.1: EZI*¢ histograms for data (black points with statistical errors), expected back-
ground (magenta histogram with systematic error band), and an example signal (dashed
black histogram).
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Figure 14.2: E7*° spectra, including data and the best-fit prediction. The misidentification
(v,) and intrinsic (v,) background contributions are also shown.
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low edge predicted statistical %
(MeV) data background (data—pred.) error contribution
475 83 70.91 —12.09 8.42 2.06
550 90 81.51 —8.49 9.03 0.88
675 63 61.94 —1.06 7.87 0.02
800 58 58.95 0.95 7.68 0.02
950 49 50.01 1.01 7.07 0.02
1100 45 44.49 —0.51 6.67 0.01
1300 35 33.73 —1.27 5.81 0.05
1500 67 65.27 —1.73 8.08 0.05

Table 14.1: A look at the low x? values. In each bin of E'*¢, we list (4" column) the
difference between the observed and predicted event counts. We also compute the statistical
error for each bin from the prediction directly: error=+/(predicted background). Comparing
these columns reveals that the data fall unexpectedly close to the predictions in six of the
eight bins. The last column gives each bin’s contribution to x?, assuming these statistical
errors only. (The contribution is just [(data — pred.)/error]2.) These values should typically
be ~1 (or larger since we have ignored systematic errors), yet most are 20—100 times
smaller. This implies that the low x? values result from a statistical fluke rather than, say,

from overestimated systematic uncertainties.
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Figure 14.3: 90% upper limit on sin?26 as a function of Am?2.
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14.2 Additional discussion

In Figure 14.4, we show a collection of relevant exclusion curves overlayed on the LSND

allowed regions:
e MiniBooNE 90% C.L. The official MiniBooNE limit and the result presented here.

e MiniBooNE 90% C.L. sensitivity. The sensitivity curve lies to the left of the
established limit curve due to the slight upward fluctuation in the data sample. A
downward fluctuation would result in the converse arrangement.

e BDT analysis 90% C.L. This contour shows the result of a largely independent
MiniBooNE analysis. The BDT analysis had different algorithms for reconstruction,
particle identification, and signal extraction and used a different scheme for incor-
porating v, CC QE information. Particle identification was based on a 172-variable
“boosted” decision tree, a machine learning algorithm [140]. Systematic errors were
dominated by detector model uncertainties. The long list of differences makes the
BDT analysis a valuable cross check of the analysis presented in this thesis.!

e KARMEN2 90% C.L. The KARMEN result discussed in §1.3.5.
e Bugey 90% C.L. The Bugey result discussed in §1.3.5.

Note that KARMEN reports a global scan contour while Bugey reports a sin?20 upper
limit contour. The MiniBooNE curves in Figure 14.4 are of the latter variety. Figure 14.5
presents the global scan contour for our analysis, using Ax?=4.61. Figure 14.6 compares
the global scan contour to one obtained using the approximate cutoff surface of Figure 12.7.
The similarity in these contours is our primary justification for using a constant Ax? cutoff.
Figure 14.7 shows our exclusion curves alongside the 90% C.L. allowed region resulting from
a 2002 LSND-KARMEN joint analysis [141]. The global scan contour is more meaningfully
compared to the LSND-KARMEN allowed region.

Figure 14.8 shows the behavior of the E7° spectrum below the 475 MeV threshold. The
observed excess at low energies, which is responsible for the poor energy x? of §13.2, does
not follow a two-neutrino v, — v, oscillation shape. Appendix D has more on this anomaly.

14.3 Conclusions

The positive oscillation signal reported by the LSND collaboration has sat for some time
in need of independent and definitive confirmation or refutation. Verification of the signal
would require an entirely new class of particles, the breaking of fundamental symmetries, or
more exotic standard model extensions not yet theorized. Rebuttal of the LSND evidence
would leave intact a three-generation neutrino oscillation picture consistent with all other
observations to date.

'The choice of which analysis to use for the official result was driven by the relative oscillation sensitivities.
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Figure 14.4: Several exclusion curves and one sensitivity curve, as described in the text.
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Figure 14.5: The upper limit (solid) and global scan (dashed) 90% contours obtained in
this analysis. The former represents the 90% C.L. upper limit on sin?26 as a function of
Am?2. The latter defines the 90% C.L. 2D allowed region for (sin?26, Am?). See §12.4 for
more.

We have presented in this thesis the apparatus, analysis, and results of a v, — v, oscilla-
tion search conducted at FNAL, with sensitivity to an LSND-like signal. Our analysis used
1.7x10% neutrino interactions at ~1 GeV collected with an 800 ton mineral oil Cherenkov
detector. Statistical and systematic errors were comparable, with the latter mostly due to
neutrino cross sections and secondary KT production.

We find no significant excess of v, candidate events, and the reconstructed neutrino
energy spectrum above 475 MeV is consistent with expected backgrounds. Our results
strongly disfavor a CPT-conserving, two-neutrino oscillation interpretation of the LSND
excess. Models that violate CPT or that introduce a rich spectrum of sterile neutrino states
are not addressed in this work but are being explored within the MiniBooNE collaboration
and elsewhere in the neutrino community. Appendix D has more.

An article related to the work in this thesis can be found in Physical Review Let-
ters [142].
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Appendix A

Data integrity

In this short appendix, we outline the data integrity checks applied to neutrino events.

e Data stream merging. All expected components of the detector and beamline data
streams must be present and must have matching GPS time stamps.

e Beam toroids. Readings from both toroids in the neutrino beamline — TOR860 and
TOR875 — are required, and they must agree to within 10%:

ITOR860 — TORSTS)|

0.1. (A1)
(TOR860 + TOR87S)

e Horn current. The horn current must fall between 170 kA and 180 kA.

e Targeting. At least 95% of protons must be on course to pass through the length
of the target. This is calculated using BPM readings (devices HP875, VP875, HPTGTL,
and VPTGTL), beam transport matrices, and a model of emittance growth with beam
intensity [143].

e Latency. If an event sits in the QT boards’ circular buffers for more than 204 us
before getting read out, the event is rejected. (For times longer than this, the event
gets written over by new digitizations.) This affects ~0.1% of triggers.
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Appendix B

Charge and time miscellany

This appendix details a few topics related to the electronics and the calculation of PMT
charge.

B.1 The bleed-off time 7

In various examples in Chapter 4, we use 7=1200 ns. This section discusses that choice.
(Note that we do not assume any particular 7 in the analysis, since we construct Vqlref
empirically. This section simply supports the arguments made in §4.2.1.)

Figure B.1 shows scope traces taken from a bench-top QT board. The input signal Vjm
is not from a PMT; it is from a pulse generator. The V, trace shows the post-integrator

voltage.!

The clean input signal allows us to see the exponential bleed-off clearly. This
particular channel has 7 = 1120 ns. The value of 7 varies from channel to channel, spanning
roughly 1100 ns to 1400 ns.

Interestingly, our laser system allows us to verify the bench-top measurements with our
data stream. The laser control box sends a “sync.” pulse to a QT board every time the
laser fires. The sync. pulse is a clean, narrow, logic pulse, so the {Q_ADCn} recorded for
that channel can be used to extract 7 cleanly. We find that the laser sync. channel has a

bleed-off time 7 = 1345 ns, as shown in Figure B.2.

B.2 Criteria for using a Q_ADCn in the @), fit

Qraw is calculated using a fit to the {Q_ADCn'}, with the fit result given by Eq. (4.11). In
this section, we list the reasons a Q_ADCn' may be excluded from a fit.

e Q_ADC1 is never included in a fit. The primary reason for this, as described in §B.3, is
that Q_ADC1 often contains no usable charge information at all. Additionally, Q_ADC1
samples a particularly volatile region of the V, curve — 10 ns of baseline, 40 ns of
a sharply rising edge, 50 ns of fast fluctuations (see Figure 4.4) — and discarding it
wholesale avoids complications these features would bring.

! More specifically, this trace shows the voltage at pin 3 of the AD829 op-amp that feeds the charge ADC.
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Figure B.1: V; for a simple pulse. The input pulse V¢ is from a pulse generator. The
Vg trace shows the voltage just before the charge ADC and the op-amp that feeds it.
(The voltage after the op-amp is discussed in §B.3.) The bleed-off time for this channel is

measured as 7 =1120 ns. The superimposed curve is proportional to (1m0 ).

e Naturally, saturated hits have some saturated values: Q_ADCn =0. These are excluded.

e For saturated hits, we exclude n=3. (Note that n=1,2 are already excluded for
saturated hits by the above cuts.)

e The DAQ occasionally and inexplicably sets Q_ADC3 = 255 for the first (and sometimes
the second) quad in a saturated hit. This phenomenon is not understood, mostly
because it is so rare. However, evidence suggests that these are simply spurious
digitizations. Indeed, no healthy hit can have Q_ADC3=255. We do not actually

exclude these values in the code; we mention it for documentation’s sake.

In summary, non-saturated hits use the values at n=2,3. Saturated hits use any good
values at n > 3.

B.3 Op-amp slew rate limitation

The charge ADC does not directly digitize the voltage across the integrating capacitor.
Instead, it digitizes an amplified and baseline-shifted version of this voltage. Part of the
amplification is provided by an AD829 op-amp configured as shown in Figure B.3. Ideally,
the feedback voltage at point B in the figure is always equal to the input voltage at point
A. However, no op-amp can maintain this equality for arbitrarily fast input signals. We
show in this section that hits with ¢ 2 3 PE produce V pulses that rise too quickly for this
configuration of the AD829.
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Figure B.2: Bleed-off time for the laser sync. channel. The laser sync. pulse (and, con-
sequently, its V) is expected to have a consistent shape and size. Further, the laser fires

asynchronously with the 10 MHz clock, so over many events the channel will sample the
entire V, curve. A scatter plot of Q_ADCn’ = Q_ADCn — Q_ADCO versus n(100 ns)

- Traw
arate the contributions from the three n values. The bleed-off time is determined using
100 ns
r=

for n = {1,2,3} reveals the sampled V, curve, as shown. The vertical dashed lines sep-

In (Q-ADC2’/Q-ADC3')

>, where (---) indicates the average over many sync. pulses. We find
7 = 1345 ns. The superimposed curve is proportional to e 55 ) (interpreting the abscissa
as t).

We first look at the on-board signals from a clean pulse

Vgﬁﬁe. Figure B.4 shows the
voltages at the input and feedback pins of the op-amp. The left panel of the figure shows

that the upstream electronics respond quickly enough, as the rise-time of trace A is the
same as the width of the input pulse (as indicated by At in the figure). The rise is too fast
for the op-amp, though, as evidenced by trace B (which would look identical to trace A in
the absence of a slew rate limitation.) We determine in Figure B.5 that the op-amp, as

configured, has a maximum slew rate of ~19 V/us. This number is consistent with the slew

rates given in the AD829 data sheet, although that document does not provide a value for
our exact configuration [144].

To see when this limit becomes important, we first write the slew rate in terms of ADC
counts. Knowing that the 8-bit ADC has a 2-volt range and noting the x % voltage divider
between the op-amp and the ADC, we obtain a slew rate of ~230 ADC counts/(100 ns).
Figure B.6 shows that a hit with charge ¢=1 PE on a new tube results in a V, that rises
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Figure B.3: The V; op-amp. The “from capacitor” signal is a baseline-shifted version of
the voltage across the integrating capacitor. The “to ADC” signal feeds directly into the
charge ADC. Other figures in this section show scope traces taken at the points labeled A4,
B, and C. (Adapted from Ref. [63].)
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Figure B.4: Slew rate limitation for a sample pulse. ngnkte is a signal from a pulse generator
that we have routed into a benchtop QT board. The post-integrator signal, as measured at
point A in the above circuit diagram, looks as expected, with a risetime comparable to the
width of the input signal (indicated by At). The signal at point B reveals the slew rate of
the op-amp. We measure this slew rate in Figure B.5.
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Figure B.5: Measuring the slew rate. By taking traces at point C in the circuit we can
directly measure the slew rate. The two plots show the scope cursor measurements (circled
in blue) that yield a result of ~19 V/us.
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Figure B.6: The rising edge of V; at 1 PE. The trace shown is the V, curve for new tubes
normalized to 1 PE. The slope of the rising edge reaches ~70 ADC counts/(100 ns).

at ~70 ADC counts/(100 ns).> Thus, the rising edge of V; is limited by the slew rate for

hits with charge ¢

~ 70

> 230 pE =3 PE.

The effect is indeed present in the data. One dramatic way to show this is to obtain the

average V, for very high intensity laser events following the procedure described in §4.2.3

for obtaining Vqref. Figure B.7 shows exactly this for a laser run with hits of mean charge

*For old tubes, this number is ~50 ADC counts/(100 ns).
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Figure B.7: Seeing the slew rate in data. These traces show the results of the Vqref-
determining procedure when it is applied to high-charge ((¢) ~20 PE) hits. The slew rate
limitation is apparent.

(g) =20 PE. We see that the slope of V is capped at the expected level and that this level
is independent of tube type (i.e., old versus new), as expected.
We conclude this section by noting a few of the ways this slew rate limitation impacts

our charge calculations:

e If Q_ADC1 lies on the rising edge of a slope-limited Vg, it provides no useful charge
information. For this (and other) reasons, Q_ADC1 is not used in the Qay fit.

e For high-charge hits, Q_ADC2 can fall on a slope-limited rising edge, as seen in Fig-
ure B.7. If Qraw and Tray are in an appropriate (though small) range, this can occur
even if the hit is non-saturated. In such cases, only Q_ADC3 has any charge information.

e In principle, the algorithm could be extended to recognize multiple hits on a tube
by looking at the fit residuals {A,} defined in §4.2.5. For slew-rate-limited hits, the
residual A; is no longer useful for identifying multiple hits.

B.4 Additional QT board effects

It is worth documenting the following two phenomena observed on the QT boards.

1. Figure B.8 shows a fake PMT signal (from a pulse generator) and the post-integrator
voltage measured at point B in the circuit diagram of Figure B.3. As long as the input
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Figure B.8: Proportionality breakdown. Vj labels the height of the input pulse. Vi(tg)
labels the height of (something proportional to) V, at a given time ¢ after the pulse arrives.
The expected proportionality Vi (tg) o« Vj breaks down at large Vj.

signal’s shape does not change, we expect the following proportionality to hold:
Vi(to) < Vo , (B.1)

where Vj is the height of the input pulse and where Vi(to) is the voltage at point
B some fixed time ty after the discriminator fires. We observe a breakdown of this
proportionality at large Vj, with a 30-PE-equivalent pulse yielding output that is ~8%
high compared to the small-pulse behavior.

. At even higher charges, the response voltage Vi(ty) plateaus. The left panel of Fig-
ure B.9 shows our sample input pulse and the voltage Vi (tp) now measured at point
A in the circuit diagram of Figure B.3. In the right panel, we double the input
pulse height with no resulting change at A. Note that the traces shown were taken
upstream of the op-amp, so this is not a saturation of that device. This hard limit
seems to vary channel to channel, falling somewhere between 40-PE-equivalent and
80-PE-equivalent. This represents an upper limit on reconstructible charge imposed
by the QT board electronics.

These and other effects contribute to the charge nonlinearities discussed in Chapter 8.
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Figure B.9: Hard limit on charge. The left panel shows a sample input pulse Vym; and
the voltage measured at the input pin of the charge op-amp. The right panel shows that
doubling this input pulse’s height does not double Vi (tg).
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Appendix C

Additional reconstruction details

C.1 Solid angle Q(r) and acceptance ¢(n)

In measurements performed during the summer of 2004, PMTs were illuminated with an
approximately parallel beam of low intensity light, and the rate of photoelectrons was
recorded for various incident angles of that light [129]. The angular efficiency function €(n)
comes from these measurements.
The distance-dependent PMT solid angle is given by
r+h

Q(r)=1- — (C.1)

where r is the distance to the apex of the PMT,! h="7.5 cm is the globe half-height, and
a =10 cm is the globe radius. Overall constant factors are taken to be part of the flux .

C.2 Transmission functions 7T;(r) and Tcy(r)

Our detector Monte Carlo simulation (BooDetMC) incorporates all of our understanding of
the optical properties of the detector. This makes it a convenient tool for establishing tables
that involve averages or integrals of underlying optical properties. We describe here how
we use BooDetMC (v01-11-01) to establish the transmission curves Tyi(r) and Tcn(r).-

We create two BooDetMC cardfiles modified from the default as follows:

e All indirect light is turned off. (RSL1, RAM1, FLU3, and UVF1 are all set to zero and the
fifth argument of OPAR is set to unity. We set the components of FLU3 to zero rather
than setting FLU2 to zero because the latter breaks older versions of the BooDetMC
code.) With these processes off, all extinction becomes absorption.

e Hadronic interactions and particle decays are turned off. (HADR and DCAY are set to
zero. This change should make no significant difference.)

e Only one tank tube is installed. (PMTR is set to “1 11” and PHT1 is reduced to “0.”.)

!This is the same r used in Chapter 9.
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Cherenkov scintillation
f110.057 || Ay | 18 cm f110.683 || Ay | 44 cm
fo ] 0.328 || Ao | 349 cm fo | 0.157 || A | 3048 cm
f3 1 0.603 || A3 | 2878 cm f3 1 0.157 || A3 | 2907 cm

Table C.1: Parameters for the Cherenkov and scintillation transmission curves shown in
Figure C.1. The scintillation transmission is well described with (effectively) only two
decay constants.

e The flasks and cubes are moved out of the way. (GPFz and GPCz are suitably modified.)
One of these cardfiles is further modified to have (essentially) no extinction by setting

ALO1 1
ALO2 0. 10000. 100000O0. O0. O0. O0. O. 0. 0. o.

These two cardfiles are then used to create isotropic Cherenkov and scintillation point
sources situated a fixed distance r from the front face of the lone PMT. The sources are
“electron bombs”: one hundred simultaneous 3 MeV electrons with isotropically chosen
directions. The ratio of the numbers of Cherenkov- or scintillation-induced photoelectrons
observed in the two runs (one with extinction, one without) provides the transmission for
that distance. Figure C.1 shows the ratio obtained for various distances. Also shown is a
fitted parametrization of the form

T(r) = flef;_l + f267;_2 + fgefﬁ . (C.2)

Table C.1 gives the parameter values. Note that this procedure incorporates all spectral
dependences (from production, propagation, and detection) into 7'(r).

C.3 Scattering tables

§9.2.1 incorporates indirect light into the predicted charge using the scattering tables
Asci(R,cos ©) and Ach (R, cos ©,cos 0, ¢). As with the transmission curves, we use BooDetMC
to establish these tables.

We begin with the scintillation scattering table. Our source events are single 3 MeV
electrons distributed uniformly in R with isotropically chosen directions. Each PMT in each
event corresponds to a particular (R, cos ©) pair. Using the BooDetMC output Ntuples, we
construct a two-dimensional table Qan(R,cos ©) that holds the average number of scintil-
lation photoelectrons seen by PMTs in each bin of (R, cos ©). We then repeat the exercise
with direct light only.? We call this second table Qgirect (R, cos ©). The excess Qan1—Qdirect
when normalized by the average direct charge Qgirect, is our desired (R, cos ©)-dependent

28(.2 lists the BooDetMC cards that control the indirect light.
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Figure C.1: Transmission curves for Cherenkov and scintillation light. These two panels
show the photoelectron ratios (points) described in the text and the fitted three-exponential
curve versus the propagation distance r for Cherenkov light (top) and scintillation light
(bottom).

function . o o . o
Agi(R,cos ©) = all\ £, CO8 ©) — Jdirect | 1, COS ' o3
SC ( ) Qdirect (R7 COos 6) ( )

Figure C.2 shows the result.

For the Cherenkov table, we create Qgirect(R,cos ©) as above but we also make two
tables binned further in cos@ and ¢: Q. (R, cosO,cos6,¢) and Qgirect (R, cos O, cos b, §).
The difference Qa— Qgdirect provides the indirect light excess which we normalize to the
directionless average charge Qgirect (R, cos ©). Our Cherenkov scattering table, then, is

Qall (Ra COoS G)a COs 97 QS) - Qdirect (Ra COoS 63 COoS 97 ¢)

Acn(R, cos ©,cos 6, ) = Qdirect (R, cos O)
rec )

(C.4)

Figure C.3 shows a portion of the resulting table.

Before ending this section, we make rigorous our definition of ¢. Let u be a vector
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Figure C.2: The scintillation scattering table.

parallel to the track direction and let h be a vector pointing from the tank center to the
PMT. Further, let R be a unit vector pointing from the tank center to the source. The
components of u and h perpendicular to R are

u,=u-(u-R)R (C.5)
and

h; =h—-(h-R)R. (C.6)
We set

p=cos '(uy-hy). (C.7)

C.4 Production profiles ps(s), pcn(s) and g(cosb;s)

To create the spatial and angular production profiles, we use a modified version of BooDetMC
that books and fills HBOOK [145] histograms with geometric information about produced

photons. We run, at one of various energies, many muon or electron events with

e HADR and DCAY set to zero,

e indirect light turned off (although this should make no difference since we are working
with photons at production),

o the flasks and cubes moved out of the way using GPFz and GPCz, and

e the tank inflated to a radius of 1609.6 via the first argument of GPAR.
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Figure C.3: Part of the Cherenkov scattering table. The R and cos © dependence of Acy, is
shown in four of the one hundred (cos#, ¢) bins.

We start each particle at (zg,yo,20) = (0 cm,0 cm, —600 cm) with momentum parallel to

the +2z axis.

The spatial distributions pgi(s; Eo) and pcn(s; Eg) for a given energy Ey come di-
rectly from finely-binned histograms of the z components of photon production points.
For the angular distribution g(cos8;s, Ey), we fill a two-dimensional histogram with pro-
duced Cherenkov photons’ positions and directions, z and cos#. Since tracks can scatter
and shower away from their original +z trajectories, 8 is taken relative to a vector that
points from the event starting vertex to the “center-of-mass” of photon production points.
(The waist seen in g(cos 0; s, Fy) in Figure 9.5 is an artifact of this.)

This is done separately at energies ranging from 5 MeV to 3100 MeV, in steps that start
at 5 MeV and gradually increase to 200 MeV. Note that none of the production profiles is
input directly into the fitter. They are used only to create the track integrals of §9.2.2, the
energy dependences of which are parametrized to provide a smooth likelihood surface.
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C.5 Glossary for Chapter 9

This reference section summarizes the functions and tables used by the reconstruction al-
gorithm. In Chapter 9, we often use modified function arguments for clarity. This section
shows all true functional dependences.

Properties of the detector

Q(r)
Solid angle subtended by a PMT at a distance r.

e(n)

PMT acceptance as a function of the photon incident angle 7.

Tsci(r)
Transmission of scintillation light over a distance r. This function accounts for the
wavelength dependence of scintillation light production, propagation, and detection.

Tch(’r‘)
Transmission of Cherenkov light over a distance r. See previous item.

Agci(R, cos ©)
Scintillation scattering table.

Ach(R,cos ©,cos 8, ¢)
Cherenkov scattering table.

Light production (particle dependent)

These functions exist separately for y and e/ track types.

(I)sci(EO)
Number of scintillation photons produced by a particle with energy Ey. This and
the next item are smooth functions of Fy derived from Monte Carlo runs at many

energies.

®cn(Fo)
Number of Cherenkov photons produced by a particle with energy Ej. See previous

item.

Psci(s; EO)
Spatial distribution of scintillation light production. (Not a direct fitter input — see
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integrals below.)

pcn(s; Eo)
Spatial distribution of Cherenkov light production. (Not a direct fitter input — see
integrals below.)

g(cos 6; s, Ey)
Angular distribution of Cherenkov light production. This depends both on the
energy Fy and on the position along the track s. (Not a direct fitter input — see
integrals below.)

Production profile integrals (particle dependent)

These functions exist separately for p and e/~ track types. They are smooth functions of
Ey, although we have not described the energy parametrizations used. They are built from

integrals involving the production profiles, per §9.2.2.

I3¥(Ey)
ffooo ds ps.i(s; Ep) s, evaluated numerically in 2.6 cm steps. i € {1,2}.

I (Eo)
ffooo ds pcn(s; Eg) s°, evaluated numerically in 2.6 cm steps. This item is used in
conjunction with the Cherenkov scattering table. i € {1,2}.

TP (Eqg, 7(0), cos 6(0))
[% ds poer(s; Eo) g(cos 0(s); s, Ey) s', evaluated numerically in 2.6 cm steps. The s
dependence of cos 8 is specified by the 7(0) and cos 8(0) arguments of Z. The integrals
are repeated in each of 100x200 bins of [r(0),cos #(0)]. The r(0) tabulation stops
at 13 m. i € {0,1,2}.

Corrected time p.d.f.’s (particle dependent)

Gcn (tc; Ey, ,U'prompt)
The prompt (“Cherenkov”) primitive distribution. This would be the corrected time
p-d.f. if late light were absent. This is a smooth function of all its arguments, per

§9.3.1.

Gsci(t Eo, pate)
The late (“scintillation”) primitive distribution. This would be the corrected time

p.d.f. if prompt light were absent. This is a smooth function of all its arguments,
per §9.3.1.
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Appendix D

Low energy region

Understanding the excess of v, candidates over expected backgrounds below E}*¢ =475 MeV
(Figure D.1, Table D.1) is a high priority within the MiniBooNE collaboration. As Fig-
ure 14.8 suggests, the energy dependence of the excess is inconsistent with a two-neutrino os-
cillation explanation. A recent paper by M. Maltoni and T. Schwetz demonstrates that 3+2
and 343 models, which posit multiple sterile neutrinos, can accommodate the MiniBooNE
and LSND observations together, but only if the null results of short-baseline disappear-
ance experiments are ignored [146]. If the low energy discrepancy is caused by overlooked or
misunderstood backgrounds, upcoming long-baseline experiments could face similar issues.

E ianalysis .
;l ! threshold ¢ MiniBooNE data
2'5: — -+ expected background
B ' - BG + best-fit oscillation
> 2'0?*" : — v, background
2 [ * v, background
n 15[ ;
1S - e
(O] C |
o 1.0
0.5
SR .
300 600 900 1200 1500 3000

reconstructed E, (MeV)

Figure D.1: Distribution of reconstructed neutrino energies for v, candidate events. An
excess is seen at lower energies where v, misidentification dominates.
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v, CC QE 12+4

vue —vye 5+2

other v, events 13+5
NC 7° 76 + 10

NC A — N~ 51 £8

dirt events 505

U= Ve 48 + 7

Kt S5, 14+ 6

K?—>v, 442

mt =, 1+1
total background 273 £ 21

observed 369

Table D.1: Events in the reconstructed neutrino energy range 300 MeV < EJf¢ < 475 MeV.
(The systematic errors listed are correlated with one another.)

Photonuclear absorption

Figure D.2 shows the cross section for photonuclear absorption
v+ 2C = X + (no similar ) (D.1)

along with cross sections for electromagnetic processes. Photonuclear absorption is not
modeled in GEANT3 and was absent from all background predictions. This reaction can
essentially remove a < from an event, leaving in its stead nearly invisible nucleons. Since
our 7° misidentification rate of @(0.01) is comparable t0 oyyc/0elec, a significant 70-based
background could result.

An upgraded Monte Carlo which includes this process is now available, and samples are
being generated. A preliminary version that leaves out the photonuclear final state particles
suggests no increase in background estimates above 475 MeV but gives ~40 additional
background events in the 300 MeV < EI*¢ <475 MeV range — 40% of the observed excess.
Including final state particles will increase reconstructed energies, bringing more of these
events above the 300 MeV threshold and into the sample. The magnitude of the increase

will be known soon.

Some disfavored explanations

e Additional ve flux. Figure D.3 shows the reconstructed energy and direction (F and
U,) of v, candidates. The low-EI* U, spectrum is particular interesting, as the
expected v, and v, backgrounds have quite different shapes. The U, distribution of

the observed excess disfavors a v, flux explanation (oscillation-based or otherwise).

e Beam-off activity. Running “random” triggers (§3.7) through the analysis chain sug-
gests that ~2 beam-unrelated events should appear in the v, candidate sample.

e Dirt. Dirt events are examined directly in Figure 11.10. No evidence for a dirt excess
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Figure D.2: Cross sections for 7 interactions on carbon as a function of v energy. Elec-
tromagnetic processes (“elec”), including the dominant pair production (“eTe™”), result in
visible showers. Photonuclear absorption (“nuc”) is rarer but can cause a 7 to go unde-
tected. Data are from Refs. [147] and [148].

is seen (although we would have corrected one away if it were).

e v, CC QF mis-ID. We verify the simulation of muon mis-ID by applying the v,
particle ID cuts to the large sample of decay-tagged v, CC QE events. No significant

data/simulation discrepancies are seen.

e Hyperon decay v flux. The beam simulation does not propagate or decay any strange
baryons produced in the target. This absent v, flux component, however, is found to
be negligible.
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