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| atest Results from MiniBooNE

* MiniBooNE

 Neutrino cross-sections
 Quasielastic and elastic scattering
* Hadron production channels

* Neutrino Oscillations

e Antineutrino Oscillations



Motivating MiniBooNE: LSND

Liquid Scintillator Neutrino Detector

e Stopped ™ beam at Los Alamos LAMPF produces ve, v,
v, but no ve (due to ™ capture).

Search forve appearance via reaction:

Vo +p—et +n
Neutron thermalizes, captures »2.2 MeV r-ray
Look for the delayed coincidence.
Major background non-beam (measured, subtracted)
3.8 standard dev. excess above background.

Oscillation probability:

P(0y, — Ue) = (2.5 £ 0.64at £ 0.4gyst) x 1072
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LSND oscillation signal

Am? [eV?

e LSND “allowed region”
shown as band

e KARMENZ is a similar
experiment with a
slightly smaller L/E; they
see no evidence for
oscillations. Excluded
region Is to right of
curve.




The Overall Picture

LSND Am? > 0.1eV® 1, < g
Atmos. Am? ~ 2 x 107 3eV? Vy, < U7
Solar Am? ~ 10 4eV? Ve <> U9

With only 3 masses, can’t construct 3 Amz2 values of
different orders of magnitude!

e |s there a fourth neutrino?

 |f so, it can’t interact weakly at all because of Z° boson resonance width
measurements consistent with only three neutrinos.

* We need one of the following:

A “sterile” neutrino sector
* Discovery that one of the observed effects is not oscillations
* A new idea



MiniBooNE:
E898 at Fermilab

 Purpose is to test LSND with:

* Higher energy

 Different beam

 Different oscillation signature
* Different systematics

e =500 meters, E=0.5—1 GeV: same L/E as LSND.




Oscillation Signature at MiniBooNE

* OQOscillation signature is charged-current quasielastic
scattering:

Vet M — € —+P

* Dominant backgrounds to oscillation:

e |ntrinsic v In the beam

W%/Lﬁue in beam

Kt — "y, K} — n¢*v, in beam
* Particle misidentification in detector

Neutral current resonance:

A — 71’ =~y or A — nvy, mis-ID as e



MiniBooNE Beamline

Target and Homn /
eV protons o 451 meters
+ g undisturbed earth
m v
Collimator ~ Decay pipe

91 cm radius, 50 m long

e 8 GeV primary protons come from Booster accelerator at
Fermilab

 Booster provides about 5 pulses per second, 5x 1012 protons per
1.6 us pulse under optimum conditions



Secondary beam: horn
and target

 Target is beryllium, 71 cm (1.7A).

e (Cooling tube and target are cantilevered
Into the neck of the horn.

e MiniBooNE horn runs at 174 kA, 140 ps
pulse. Can focus ™ for neutrinos or T~
for antineutrinos.

Welding the inne_[{;conduc'tor |



Decay Pipe and absorber

50m

Decay pipe
dia. 6’ (1.8m)

e Shielding provided by

e Decay region is filled with stagnant air shared gravel Till and earth berm
with target pile. above decay pipe
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_"}800 tons; 40 ft diameter
B Inner volume: 1280 8” PMTs
* (Quter veto volume: 240 PMTs




Cherenkov ring characteristics:

MUONS

* Muons have
sharp filled in
Cherenkov rings.



Cherenkov ring characteristics:
electrons

 Electrons undergo
more scattering

and produce

“fuzzy” rings.




Cherenkov ring characteristics:

1% decay to yy with
99% branching ratio.

Photon conversions are ﬁ\

nearly indistinguishable
from electrons.



MiniBooNE's track-based
reconstruction

A detailed analytic model of extended-track light production
and propagation in the tank predicts the probability
distribution for charge and time on each PMT for individual
muon or electron/photon tracks.

 Prediction based on seven track parameters: vertex (x,y,z),
time, energy, and direction (8, p)=(U,, U,, U,).

* Fitting routine varies parameters to determine /-vector that
best predicts the actual hits in a data event

e Particle identification comes from ratios of likelihoods from
fits to different parent particle hypotheses



Beam/Detector Operation

e Fall 2002 - Jan 2006: Neutrino mode (first oscillation
analysis).

e Jan 2006 - 2011(?): Antineutrino mode

* (Interrupted by short Fall 2007/ - April 2008 neutrino
running)

* Present analyses use:
e =>5H,/E20 protons on target for neutrino analyses
e H5.66E20 protons on target for antineutrino analyses

 QOver one million neutrino interactions recorded: by far the
largest data set in this energy range



Neutrino scattering cross-
sections

 Jo understand the flavor physics of neutrinos (i.e.
oscillations), i1t is critical to understand the physics of
neutrino interactions

* This is a real challenge for most neutrino experiments:
 Broadband beams
 Large backgrounds to most interaction channels

* Nuclear effects (which complicate even the definition
of the scattering processes!)



. " The state of knowledge of v
S Catte rl n g C rOSS_SeCt I O n S interactions before the current;
generation of experiments:

fO r V u ' G.P. Zeller

N

e |Lowest energy ( E < 500 MeV )
Is dominated by CCQE.

=

* Moderate energies
( 500 MeV < E < 5 GeV ) have
lots of single pion production.
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 High energies (E > 5 GeV ) are
completed dominated by deep
Inelastic scattering (DIS).
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 Most data over 20 years old,
and on light targets
(deuterium).

e Current and future experiments
use nuclear targets from C to
Pb; almost no data available.



Dominant interaction channels
at MiniBooNE

CCn° (4%)
~ | —CCmulti-nt (3%)
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Dominant interaction channels
at MiniBooNE
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Dominant interaction channels
at MiniBooNE

Charged-current DIS (0.4%) — ) CCmulti-m (3%)
guasielastic Q |
\\ NC 7t (2%)
@ / Others (4.1%)

NC multi-m (1%)

V\/V

CCam (0.5%)
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Dominant interaction channels
at MiniBooNE

Charged-current
19 production

Charged-current DIS (0.4%) — ) CCmulti-m (3%)
guasielastic Q |
\\ NC 7t (2%)
@ / Others (4.1%)

NC multi-m (1%)
CCam (0.5%)

/ 0
T<

+ coherent N y p

Neutral-current
19 production

Charged-current
Tt production

v v

W T+
—

N ’ p + coherent n ’ p

Neutral-current




Dominant interaction channels
at MiniBooNE

Charged-current
19 production

Charged-curren

wasielsic  MINIBOONE has measured Cross-

sections for all of these exclusive v
channels, which add up to 89% of the g4 0
Charged-curre :<
m+ production total event rate A

+ coherent N ’ p

Neutral-current
19 production

Neutral-current
elastic

Wi
N 5
n ’ p + coherent n ’ p




Critical for measuring cross-
sections: well-understood flux

e Detailed MC simulations of target+horn+decay
region, using 1 production tables from dedicated
measurements: PRD 79 072002 (2009).

D(E,) (VPOT/GeV/em?)

e No flux tuning based on MB data

e Most important m production measurements from
HARP(at CERN) at 8.9 GeV/c beam momentum (as
MB), 5% int. length Be target (Eur.Phys.J.C52
(2007)29)
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e Error on HARP data (7%) is dominant contribution

to flux uncertalnty FIG. 2: (color online) Predicted v, flux at the MiniBooNE
detector (a) along with the fractional uncertainties grouped
¢ Overall 9% flux uncertainty, dominates cross into various contributions (b). The integrated flux is 5.16 x

1n—10 ~M 2 /r AR VA ‘

1071 v, /POT Jem” (0 < E, < 3 GeV) with a mean energy
of 788 MeV. Numerical values corresponding to the top plot
are provided in Table V in the Appendix.

section normalization (“scale”) error




MiniIBooNE cross-section
measurements

e NCn?

e CCmY

e CCmt

* CC Quasielastic
* NC Elastic

e CC Inclusive



MiniIBooNE cross-section
measurements

« CCmO .
. \(
. CC o e ;‘;De N
ue -, a2
* CC Quasielastic \56055\“% ch odes
e N tic eﬁc\\ﬁ\\,e

e CC Ve



Charged-current ° production

e | east common interaction for which we do
exclusive measurement

 Uniquely, proceeds only via resonance:

V+n—=2u+A—-p+p+m’
 (Challenging 15-parameter, 3-ring fit needed: Y
e Event vertex: (x,y,z,t) u A

 Muon: (E,B,®p)
e 1st photon: (E,B,®,s)

e 2nd photon: (E,B,®,s) S2

e Relatively high backgrounds (mostly CCrtt (X,y,Z,1)
which we measure separately)



A general concern: final state interaction

* The particles that leave the target
nucleus are not necessarily the final
state particles from the initial neutrino-
nucleon interaction.

e True CCmt* can be indistinguishable from
CCQE (mr* absorption) or CCn° (charge
exchange).

e Experiments only have access to what
came out of the nucleus. These are
called observable events:

* An interaction where the target
nucleus yields one p—, exactly one
tt, and nuclear debris is observable
CCmt*, regardless of the initial
nucleon-level interaction

*  Most of our measurements are of \
observable cross-sections.



o Signal vs tank m°
Signal Tank m°

\Y,

o 19 from charge exchange within the
target nucleus is considered signal.

 (Charge exchange with other nuclel
constitutes a background.

e We include FSI pion production to
remove model dependence; exclude
tank m° to remove detector dependence.




Reconstructed signal candidates

 [wo-photon invariant mass myy allows very effective identification of
events with a m°

e Reconstruction of full event allows observation of A resonance
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* * —— Statistical error

<

—— MC prediction : Systematic error NUANCE is the default
— Observable CCx” | — NUANCE MiniBooNE neutrino
— 0 s . .

Background = Interaction generator

events / p.o.t./ GeV/c*

Background no r®

OO 005 0.1 015 02 025 03 035 04 . 2 1.4 1.6 1.8 2

m,, [GeV/c?] reconstructed my. [GeV/c?]




Measured observable CCr®
Cross-section
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B «—n’ + m+ absorption
I beam unisims
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cross-sections
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optical model

Systematic error Additionally, we
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The dominant error is T+ charge exchange and absorption in the detector.
First-ever differential cross-sections on a nuclear target.

The cross-section is larger than expectation for all energies.

Publication Is imminent.



Charged-current ™™ production

e Second-largest interaction channel at MiniBooNE

 (Can proceeds via resonance V+N = p+A = p+N'+mt or by
coherent nuclear scatter.

* |dentified by observation of two stopped muon decays after

primary event. Unique signature results in purest exclusive
sample in MiniBooNE

* Pion reconstruction and p/m separation are challenging.



Cherenkov ring shapes: ™

Pions occasionally interact hadronically, \

losing energy and changing direction u
sharply. /

Kinked track produces two rings: a
“doughnut” and a “doughnut hole.”

Pion reconstruction fitter developed to
searched for the kinked track

Likelihood identifies the pion
~90% purity, ~67,000 events. °. preliminary

Reconstruction of muon and pion allows A
mass to be calculated

1100 1200 1300 1400 1500 1600 1700
mw+N Mass (MeV/c?)



Measured observable charged-

current Tt cross-sections

 Differential cross sections (flux
averaged):

 do/dQ?, do/dE,, do/dcosO,,
do/d(Er), do/dcosOx:

e Double Differential Cross Sections
* d?0/dE,dcosB,, d?c/dErdcosBy

e Data Q% shape differs from the
model

 Paper submission is imminent

29_ (cm%c4MeV?)

3(Q?)

600 800 1000 1200 1400 1600 1800 2000
Neutrino Energy (MeV)

preliminary

200 400 600 800 1000 1200 1400
Q? (MeV2/c*)



Charged-current quasielastic
scattering (CCQE)

Lepton vertex well understood

Nucleon vertex parametrized with 2 vector form factors
F1 2 and one axial vector form factor Fa

Use relativistic Fermi gas model of nucleus; F; 2 come
from electron scattering measurements

Generally assume dipole form of Fa; only parameter is
axial mass mga extracted from neutrino-deuterium

scattering experiments: 2002 average
Ms=1.026x0.021 GeV




CCQE analysis

* We report a nucleon-level cross-section here, not just
observable

e CCm* is (largest) background (one p decay missed because
of T absorption, Y- capture, or detector inefficiency)

* Important detail: MiniBooNE data used to measure this
background ~1/2 of CCrt* background is irreducible (no m
in final state, /.e. observable CCQE)

 Final CCQE sample:
e 146k CCQE candidates
o 27% efficiency - /7% purity



CCQE fit results: Q% dependence

Flux-integrated single differential cross section (Q?.):

e Data are compared
(absolutely) with CCQE
(RFG) model with various
parameter values

MiniBooNE data with shape error
RFG model (M| =1.03 GeV, k=1.000)

* We prefer larger ms e RFG model (M"=135 GeV, k=1.007)

compared to D, data y
RFG model (M, =1.35 GeV, x=1.007) x1.08

e Qur CCQE cross-section is
30% high the world-
averaged CCQE model (red).

e Model with CCQE
parameters extracted from it
shape-only fit agrees well 0 02040608 1 12141618 2
with over normalization (to Q2 (GeVz)
. L QE
within normalization error).




Flux or interaction model?

* Normalization disagrees: check kinematics

 Look at data-MC disagreement before tuning

data-l\/l_p_ ratio,

1

I 0.8 -
0.6
. (a) E,=0.4GeV

before tuning
(a) (b) (c)

(b) E,=0.8GeV
(c) E,=1.2GeV
(d) Q*=0.2GeV>
() Q°=0.6GeV?
(f) Q’=1.0GeV?

02 04 06 08 1 12 14 16 18 2

ini T, (GeV)
MiniBooNE collabo.,PRL100(2008)032301 " - |

e Disagreements follow
contours of constant
Q2, not constant Ey as
would be expected if
flux wrong.

e Normalization agrees
(within errors) with
prediction using best
fit shape parameters.




Comparisons to other
experiments (carbon targets)

total cross section

e — —
—— e

MiniBooNE data with total l...";'t'nl'
NOMAD data with total error
SciBooNE data with preliminary error
RFG model with _\-'l‘h_ =1.03 GeV, x=1.000
RFG model with _\1‘.‘"—1.35 GeV, k=1.007

e Qur data (and SciBooNE) appear to prefer higher M4 than NOMAD, but the
disagreement is not very significant.

 Note that:
 Qur errors are systematic-dominated and grow at highest energies

e NOMAD required observed muon, proton tracks and no others: in principle,
different processes may contribute to the two experiments’ samples



Neutrino Oscillations: 2007/
result

e Search for nu_e appearance in
the detector using quasielastic 4.0

¢ MiniBooNE data (stat. error)

scattering candidates 3.5 © + expected background (syst. erro)
e ) 3.0
. Sen_3|t|\_/|ty tc_) LSND typg > -\, background
oscillations is strongest in 475 = 23 . v, background
2 I
MeV < E < 1250 MeV range £ 20 Oscilaton
» Data consistent with 6 1.5 analysis region
background in oscillation fit 1.0 B
range 05 s Bl B ——
 Significant excess at lower 300 500 700 900 1100 1300 1500 300¢

. reconstructed E, (MeV)
energies: source unknown,

consistent with either ve or
single photon production



Neutrino Oscillation Limit

10°

T rrrin

_' ; ~ sin®(26) upper limit
— MiniBooNE 90% C.L.

I

e JSingle-sided 90%
confidence limit

—h
[ =]

LI IIIITI

e Best fit (star):
(sin?20, Am?) =
(0.001, 4 eV?)

1

IAm?l (eV3/c?)

LI IIUIII

e Reported in PRL 98
231801 (2007)

107'F
* Low-energy excess -
analysis PRL 102 " [ LSND 90% C.L.
101802 (2009) - [] LSND 99% C.L.
10-2 Ll g sl L 3 1l Ll

10° 102 10 1
sin’(26)



Antineutrino Oscillations

* LSND was primarily an antineutrino oscillation search;
need to verify with antineutrinos as well due to potential

CP-violating explanations

* Now have same number of protons on target in
antineutrino vs. neutrino mode, but...

e Antineutrino oscillation search suffers from lower
statistics than in neutrino mode due to lower
production and interaction cross-sections

e Also, considerable neutrino contamination (20+5)%
In antineutrino event sample



Oscillation Fit Method

e Maximum likelihood fit:

—_)hl(L) — ('.1'1 — U1, ...Tp — Hn j'.\[_l[.'l'] — 1, ...Tpn — KUy [ -+ hl( .\[ |

e Simultaneously fit
e vV, CCQE sample

e High statistics v, CCQE sample

e v, CCQE sample constrains many of the uncertainties:

e v, and v, flux uncertainties: Ve

/
‘Tl'

e Cross section uncertainties (assume lepton universality)




Antineutrino oscillation
candidates

e Background modes -- estimate before constraint from v, data
(constraint changes background by about 1%)

e Systematic error on background =10.5% (energy dependent)

Process 200 — 475 MeV 475 — 1250 MeV
V) CCQE 4.3 2.0
NC =Y 41.6 12.6
NC A — N~ 12.4 3.4

External Events 6.2 2.6

Other 1, 7.1 4.2

U from pu* Decay 13.5 31.4
(IZ) from K* Decay 8.2 18.6

U from K9 Decay 5.1 21.2

Other . 1.3 2.1

Total Background 99.5 98.1
0.26% U, — v, 9.1 29.1




Data 1n antineutrino oscillation

search

e A75 MeV < E < 1250 MeV:

e 99.1+9.8(syst) expected
after fit constraints

e 120 observed

e Raw counting excess
significance is 1.50

e Also see small excess at low
energy, consistent with
neutrino mode excess If
attributed to neutrino
contamination in v beam
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475-1250 MeV
oscillation-sensitive region

o Data (staterr.)

New! v, fromu™
5.66E20 POT [ v, from K™
. v, fromK’

) 7" misid

1415 30
E% (GeV)




Electron antineutrino
appearance oscillation T
results __ es%cL

99% CL

KARMEN2 90% CL
BUGEY 90% CL
e Results for 5.66E20 POT ;
* Maximum likelihood fit for simple
two-neutrino model

c...,

SN T E>475 MeV

* Oscillation hypothesis preferred to : Wy
background-only at 99.4% confidence .
level.

e E>47/5 avoids question of low-
energy excess in neutrino mode.

D LSND 90% CL

e Signal bins only:

e Po(null)= 0.5%

o P (bestfit)= ~10%
Submitted to PRL
earXiv: 1007.5510

I:I LSND 99% CL




Future sensitivity in v data

E>4/75MeV fit

 MiniBooNE approved for a
total of 1x1021 POT

* Potential 30 significance
assuming best fit signal

e Systematics limited at about
2x1021 POT

Protons on Target




Conclusions

e (Cross-sections:

 MiniBooNE has most precise measurements of top five interaction modes
on carbon; only differential and double-differential cross-sections in some
modes

e Some disagreements with most common nuclear models?
* Oscillation searches

« Significant v, (~3 o) and v, (~2.8 a) excesses above background are
emerging in both neutrino mode and antineutrino mode in MiniBooNE

 The two modes do not appear to be consistent with a simple two-flavor
neutrino model

* Antineutrino results still heavily statistics-limited; MiniBooNE plans to
accumulate more data until the goal of 102! protons on target is reached



