MiniBooNE and BooNE

1. MiniBooNE Appearance Results
2. Other Anomalies
3. Resolution: The BooNE Proposal
4. Conclusions
Synopsis:

- A number of anomalies are appearing in neutrino data in the region of \(\Delta m^2 \sim \text{an eV}^2 \)

- Predominantly from single detector experiments...

- There is some possibility that the effects are due to oscillations between sterile neutrinos and active neutrinos

- A definitive experiment is warranted

- BooNE would be such an experiment
Motivation....

Anomalies in Neutrino Data
Motivation....

Excess Events from LSND still remain:

- LSND found an excess of $\bar{\nu}_e$ in $\bar{\nu}_\mu$ beam
- Signature: Cerenkov light from e^+ with delayed n-capture (2.2 MeV)
- Excess: $87.9 \pm 22.4 \pm 6.0$ (3.8s)
- The data was analysed under a two neutrino mixing hypothesis*

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = \sin^2 (2\theta) \sin^2 \left(\frac{1.27 \, L \, \Delta m^2}{E} \right)$$

$$= 0.245 \pm 0.067 \pm 0.045 \%$$

KARMEN at a distance of 17 meters saw no evidence for oscillations \rightarrow low Δm^2
Reactor Anomaly in $\bar{\nu}_e$ Data

- Inclusion of new beta decay estimates in reactor flux calculations
- Increases expected flux

 Best fit: 0.943 ± 0.023
 $P_{\text{osc}} \sim 10\%$, $\Delta m^2 \sim 1$ eV2
Gallium Source Anomaly in ν_e Data

- Observed too few ν_e interactions observed from an electron capture source
Can the anomalies be due to a more complicated oscillation picture?

Sterile neutrino models

- 3+2 \rightarrow \text{next minimal extension to 3+1 models}

- 2 \text{ independent } \Delta m^2
- 4 \text{ mixing parameters}
- 1 \text{ Dirac CP phase which allows difference between neutrinos and antineutrinos}

Oscillation probability:

\[P\left(\nu_\mu \rightarrow \nu_e \right) = 4|U_{\mu 4}|^2|U_{e 4}|^2 \sin^2 \theta_{41} + 4|U_{\mu 5}|^2|U_{e 5}|^2 \sin^2 \theta_{51} + \]
\[+ 8 |U_{\mu 5}| |U_{e 5}| |U_{\mu 4}| |U_{e 4}| \sin \theta_{41} \sin \theta_{51} \cos (\theta_{54} \pm \phi_{45}) \]
Cosmology Fits for the Number of Sterile Neutrinos

Motivation....

\[3 + N_s \]

- **CMB + LSS + ΛCDM**

 \[N_s = 1.6 \pm 0.9 \]

 Hamann, Hannestad, Raffelt, Tamborra, Wong, PRL 105 (2010) 181301

- **BBN**:

 \[N_s = 0.64 \pm 0.4 \]

Motivation....

MiniBooNE Data
MiniBooNE looks for an excess of electron neutrino events in a predominantly muon neutrino beam.

Neutrino mode: $\nu_\mu \rightarrow \nu_e$ oscillation search

Antineutrino mode: $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillation search
Data stability

- Very stable throughout the run
Meson production at the Proton Target

Pions(+/−):

- MiniBooNE members joined the HARP collaboration
 - 8 GeV proton beam
 - 5% Beryllium target
- Spline fits were used to parameterize the data.

Kaons:

- Kaon data taken on multiple targets in 10-24 GeV range
- Fit to world data using Feynman scaling
- 30% overall uncertainty assessed
Separating muon-like and electron-like events by using a likelihood ratio technique

$\log(L_e/L_m) > 0$ favors electron-like hypothesis

Note: photon conversions are electron-like.
This does not separate e/π^0.

Separation is clean at high energies where muon-like events are long.

Analysis cut was chosen to maximize the $\nu_\mu \rightarrow \nu_e$ sensitivity

Geoffrey Mills - Los Alamos
Reconstruction of NC π^0 events

Separating electrons from neutral current π^0s by using a likelihood ratio combined with the γγ invariant mass.
Data plotted vs L/E

5.66×10^{20} \text{ POT}
(> 1×10^{21} \text{ to date})
Direct MiniBooNE-LSND Comparison of $\bar{\nu}$ Data
Antineutrino mode MB results Full Energy Range

- Results for 5.66×10^{20} POT

- Maximum likelihood fit in *simple 2 neutrino model*

- Null excluded at 99.5% with respect to the two neutrino oscillation fit
Conclusions (I)

Significant ν_e ($\sim 3\sigma$) and $\bar{\nu}_e$ ($\sim 2.75\sigma$) excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE.

Antineutrino mode: statistical errors dominate (more data?)

MiniBooNE plans has now accumulated $>10^{21}$ protons on target in anti-neutrino mode and we hope to release results this summer.

Difficulties remain:
- Cannot determine whether excesses are due to an oscillation phenomena because MiniBooNE has only one detector
- Need to vary E and L
Long-Baseline News, May 2010:

“ *** LSND effect rises from the dead… “
A Letter of Intent to Build a MiniBooNE Near Detector: BooNE

October 12, 2009

I. Stancu
University of Alabama, Tuscaloosa, AL 35487

Z. Djuric
Argonne National Laboratory, Argonne, IL 60439

D. Smith
Embry-Riddle Aeronautical University, Prescott, AZ 86301

R. Ford, T. Kobilarcik, W. Marsh, & C. D. Moore
Fermi National Accelerator Laboratory, Batavia, IL 60510

J. Grange, B. Osmanov, & H. Ray
University of Florida, Gainesville, FL 32611

G. T. Garvey, J. A. Green, W. C. Louis, C. Mauger, G. B. Mills, Z. Pavlovic,
R. Van de Water, D. H. White, & G. P. Zeller
Los Alamos National Laboratory, Los Alamos, NM 87545

W. Metcalf
Louisiana State University, Baton Rouge, LA 70803

B. P. Roe
University of Michigan, Ann Arbor, MI 48109

A. A. Aguilar-Arevalo
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México D.F. México
BooNE

- Cloning a MiniBooNE detector for ~200m

- Accumulate a sufficient data sample in < 1 year

- will dramatically reduce errors in neutrino mode, the 3σ low energy excess has a ~ 6σ significance with statistical errors only.

- Many short runs for checking systematic effects would be possible, as was done for MINOS (e.g. 25 meter absorber, different horn currents).

Geoffrey Mills - Los Alamos
New Location at 200 meters from BNB Target
Neutrino Fluxes at Near and Far Locations
Far to Near Neutrino Flux Ratios at 200 m

MiniBooNE Far/Near fluxes Scaled by $1/r^2$

Neutrino mode

Anti-neutrino mode

Geoffrey Mills - Los Alamos
ν_μ Charged Current Event Rates Near and Far

Quasi elastic event rates
Geoffrey Mills - Los Alamos
Background prediction $\bar{\nu}$ mode

<table>
<thead>
<tr>
<th>5.66e20 Protons on Target</th>
<th>200-475</th>
<th>475-1250</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^\pm</td>
<td>13.45</td>
<td>31.39</td>
</tr>
<tr>
<td>K^\pm</td>
<td>8.15</td>
<td>18.61</td>
</tr>
<tr>
<td>K^0</td>
<td>5.13</td>
<td>21.2</td>
</tr>
<tr>
<td>Other $\bar{\nu}_e$</td>
<td>1.26</td>
<td>2.05</td>
</tr>
<tr>
<td>NC π^0</td>
<td>41.58</td>
<td>12.57</td>
</tr>
<tr>
<td>$\Delta \rightarrow N\gamma$</td>
<td>12.39</td>
<td>3.37</td>
</tr>
<tr>
<td>dirt</td>
<td>6.16</td>
<td>2.63</td>
</tr>
<tr>
<td>ν_μ CCQE</td>
<td>4.3</td>
<td>2.04</td>
</tr>
<tr>
<td>Other ν_μ</td>
<td>7.03</td>
<td>4.22</td>
</tr>
<tr>
<td>Total</td>
<td>99.45</td>
<td>98.08</td>
</tr>
</tbody>
</table>
\[\nu_e \] Background Uncertainties

- Unconstrained \(\nu_e \) background uncertainties
- Biggest contributors:
 - Detector response
 - Cross sections

<table>
<thead>
<tr>
<th>Uncertainty (%)</th>
<th>200-475MeV</th>
<th>475-1100MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^+)</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>(\pi^-)</td>
<td>3</td>
<td>2.3</td>
</tr>
<tr>
<td>(K^+)</td>
<td>2.2</td>
<td>4.7</td>
</tr>
<tr>
<td>(K^-)</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>(K^0)</td>
<td>1.7</td>
<td>5.4</td>
</tr>
<tr>
<td>Target and beam models</td>
<td>1.7</td>
<td>3</td>
</tr>
<tr>
<td>Cross sections</td>
<td>\textbf{6.5}</td>
<td>13</td>
</tr>
<tr>
<td>NC (\pi^0) yield</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Hadronic interactions</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Dirt</td>
<td>1.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Electronics & DAQ model</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Optical Model</td>
<td>\textbf{8}</td>
<td>3.7</td>
</tr>
<tr>
<td>Total</td>
<td>13.4%</td>
<td>16.0%</td>
</tr>
</tbody>
</table>

(\(\bar{\nu}_\mu \) constrained error \(\sim 10\% \))
BooNE Performance

➢ Use full MiniBooNE sensitivity machinery

➢ Use identical detector response (fully correlated errors)

➢ 1×10^{20} POT per mode (2×0.5 years at current rates)

➢ Reweight MC events for fluxes at 200 meters

➢ Full oscillation analysis package applied
Sensitivity with Near/Far Comparison

• Near/Far comparison sensitivity
 ➢ Near location at 200 meter
 ✓ 1×10^{20} pot ~ 1 yr of running
 ➢ Full systematic error analysis
 ✓ Flux, cross section, detector response

Geoffrey Mills - Los Alamos
Sensitivity with Near/Far Comparison Anti-nu Mode

- Near/Far comparison sensitivity
 - Near location at 200 meter
 - 1×10^{20} pot \sim 1 yr of running
 - Full systematic error analysis
 - Flux, cross section, detector response

Geoffrey Mills - Los Alamos
Neutrino Disappearance Sensitivity with Detector at 200 Meters
Antineutrino Disappearance Sensitivity with Detector at 200 Meters

\[\nu_\mu \text{ Disappearance } \chi^2 \]

\[\Delta m^2 (\text{eV}^2) \]

\[\sin^2(2\theta_{\mu\tau}) \]

Preferred by some fits

Geoffrey Mills - Los Alamos
Conclusions and Outlook

Significant $\nu_e (3 \sigma)$ and $\bar{\nu}_e (2.75 \sigma)$ excesses above background are emerging in both neutrino mode and antineutrino mode in MiniBooNE

- The two modes do not appear to be consistent with a simple two flavor neutrino model
- Neutrino mode systematic errors dominate (near detector?)
- Antineutrino mode statistical errors dominate (more data?)
- MiniBooNE plans accumulate more data until the 2012 shutdown

BooNE proposal:

- Cloning or cannibalizing MiniBooNE at a near position following the $\bar{\nu}$ run
- Cost ~ 10M$ for new detector, 5M$ reusing the existing MiniBooNE detector.
- Data can be accumulated in < 1 yr at present proton delivery rates
BACKUP
We adjust the parameters of a Fermi Gas model to match our observed Q^2 Distribution.

Fermi Gas Model describes CCQE n_m data well

$M_{A,\text{eff}} = 1.23 \pm 0.20 \text{ GeV}$

$\kappa = 1.019 \pm 0.011$

Also used to model ν_e and $\bar{\nu}_e$ interactions.
The most important types of neutrino events in the oscillation search:

Background Muons (or charged pions):
Produced in most CC events.
Usually 2 or more subevents or exiting through veto.

Signal and Background
Electrons (or single photon):
Tag for \(\nu_\mu \rightarrow \nu_e \) CCQE signal.
1 subevent

Background \(\pi^0 \)s:
Can form a background if one photon is weak or exits tank.
In NC case, 1 subevent.
Antineutrino mode MB results for $E>475$ MeV

($E>475$ avoids question of low energy excess in nu-mode)

- Results for 5.66E20 POT
- Maximum likelihood fit for *simple two neutrino model*
- Null excluded at 99.4% with respect to the two neutrino oscillation fit.
Direct MiniBooNE-LSND Comparison of $\bar{\nu}$ Data

$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ vs $L / E_{\bar{\nu}}$ (m / MeV)

- LSND
- MB $\bar{\nu}$ mode 5.66×10^{20} pot
Near/Far Sensitivity for Several Distances

- 150 m : 0.6×10^{20} POT
- 200 m : 1.0×10^{20} POT
- 250 m : 1.5×10^{20} POT
- 300 m : 2.0×10^{20} POT

Near/Far comparison relatively insensitive to detector distance for roughly the same number of events

- 200 meters gives similar flux shapes