Neutrino and Antineutrino Cross Sections at MiniBooNE

Sam Zeller
Columbia University
(for the MiniBooNE collaboration)

NO-VE Workshop
February 7, 2006

- our 1st ν cross section results (CC π^+/QE)
- future directions in MiniBooNE σ_ν program
MiniBooNE is a ν Oscillation Experiment

- main goal: confirm or rule out $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ LSND results
- search for $\nu_\mu \rightarrow \nu_e$ oscillations

- not going to be showing oscillation results
- working hard on performing a very careful ν_e appearance analysis …
- you’ll have to stay tuned
MiniBooNE On the Way

- while designed for $\nu_\mu \rightarrow \nu_e$ oscillation search …

 * well-suited for low E ν cross section physics

 - useful to the community
 - important for oscillation analysis
 - will tell you about

* plus some new opportunities (mention at end)

 - antineutrino data! (big change for us)
Previous Measurements

• most of present low energy $\nu \sigma$ knowledge comes from bubble chamber exps

• early experiments at ANL, BNL, FNAL, CERN, Serpukhov, etc.

• 20-100% errors due to:
 - low statistics (100’s of events)
 - uncertainties in ν flux

• in addition to large errors, results often conflicting (some care in interpreting)

• data useful to constrain our MCs

• idea of caliber of past data …
Low Energy ν Cross Sections

predictions from NUANCE

- MC which MBooNE uses
- open source code
- supported & maintained by D. Casper (UC Irvine)

- standard inputs
 (common ingredients - osc exps)
 - Smith-Moniz Fermi Gas
 - Rein-Sehgal 1π
 - Bodek-Yang DIS

Super-K atmospheric ν

MINOS, NuMI
K2K, NOvA
MiniBooNE, T2K
Low Energy ν Cross Sections

- imperative to precisely predict signal & bkgd rates for future oscillation exps
 - will be more sensitive to sources of syst error
 - nuclear targets!
 (most past data on H_2, D_2)

- further motivates need for new measurements

- new data adding new info; revealing interesting features
 K2K, NOMAD, MiniBooNE
MiniBooNE Beamline

- >700,000 contained ν events
- providing a valuable sample to study low $E \nu$ cross sections

decay region: $\pi \rightarrow \mu \nu$, $K \rightarrow \mu \nu$

“LMC” measure K flux in-situ

MiniBooNE detector (CH_2)

magnetic focusing horn

450 m earth berm: ν

movable absorber: stops muons, undecayed mesons

magnetic horn: meson focusing

FNAL 8 GeV Booster
νμ Flux at MiniBooNE Detector

- incident on detector: high purity beam (>99% νμ flavor)

- νμ mainly from π+ → μ+ νμ

- π production constrained by global π data & E910 …

- eventually HARP

- really advance knowledge of low E hadroproduction (see Gibin’s talk)

MC predicted ν energy spectrum
\(\nu_{\mu}\) Flux at MiniBooNE Detector

- \(<E_{\nu}>^{\text{MB}oo\text{NE}} \approx 0.7 \text{ GeV}\)
- well-suited for low energy \(\nu\) cross section studies
 - small tail; enjoy smaller backgrounds from higher multiplicity \(\nu\) interactions
- complementary to other \(\sigma_{\nu}\) experiments
 \(<E_{\nu}^{\text{K2K}} > \approx 1.3 \text{ GeV}\)
 \(<E_{\nu}^{\text{NuMI}} > \approx 10 \text{ GeV}\)
 \(<E_{\nu}^{\text{NOMAD}} > \approx 24 \text{ GeV}\)

MC predicted \(\nu\) energy spectrum
Event Fractions at MiniBooNE

MiniBooNE flux-averaged event compositions
(N_{TANK}>200, N_{VETO}<6)

- 48% CC QE
- 31% CC π^+
- 8% NC π^0
- 5% CC π^0
- 3% NC $\pi^{+/-}$
- 4% multi-π
- 1% NC elastic

this flux spectrum dictates what type of ν interactions we see …

demonstrate understanding of 79% of events before analyzing ν_e (<1% of total)
Quasi-Elastic Scattering

Why important?

- ν_μ QE σ necessary to accurately predict signal rates in oscillation experiments (including our own)

 * ν_e QE are main signal for $\nu_\mu \rightarrow \nu_e$ appearance searches; have similar kinematics & σ

- channel used as “golden mode” to normalize other cross section samples - lots of events, well known σ

 (common practice that we will also adopt for now)
Quasi-Elastic Scattering

\[\nu_\mu \ n \rightarrow \mu^- \ p \]

- highest statistics
 \(\sim 2500 \) events
- low E data on \(D_2 \)
Quasi-Elastic Scattering

\[\nu_\mu \ n \rightarrow \mu^- \ p \]

- new information already coming in (NOMAD, ^{12}C)
Quasi-Elastic Scattering

\[\nu_\mu \ n \rightarrow \mu^- \ p \]

- **MiniBooNE:**
 - \(^{12}\text{C}\) (valuable for osc exps)
 - this analysis: **60k events** (3.2x10\(^{20}\) POT)
 (already more data than all previous exps combined)
 - can select 86\% pure QE sample
MiniBooNE QE Data

- most copious events at MiniBooNE
- also simplest: two body kinematics

\[\nu_{\mu} n \rightarrow \mu^- p \]

\[\nu_{\mu} \quad l \quad \ell^- \quad W^+ \quad n \quad \mu^{-} \quad p \]

measure visible \(E \) and \(\theta_{\mu} \) from mostly Čerenkov (\(\mu \)) + some scintillation light (\(p \))

Forward muons corresponds to low \(Q^2 \) …
MiniBooNE QE Data

• similar effect seen by K2K

• working on understanding these features in our data …

• to improve data, MC agreement performing shape fits for:

 (J. Monroe)

 - axial form factor (M_A) &
 - nuclear model pars (E_B,p_F)

• incorporating new nuclear models (R. Tayloe)
 (that are constrained by modern electron scattering data)

\[Q^2 = m_\mu^2 - 2E_\nu(E_\mu - p_\mu \cos \theta_\mu) \]
MiniBooNE QE Data

- making use of $E_\mu, \theta_\mu \ldots$

$$E_{\nu}^{QE} = \frac{2M_pE_\mu - m_\mu^2}{2(M_p - E_\mu + p_\mu \cos \theta_\mu)}$$

- energy distribution that will be used for CC π^+/QE cross section measurement

- next, numerator (CC π^+) \ldots

(J. Monroe)
CC $1\pi^+$ Production

resonant π^+ production (dominant) coherent π^+ production

- forward emitted π
- low Q^2
CC $1\pi^+$ Production

resonant π^+ production (dominant) coherent π^+ production
CC $1\pi^+$ Production

resonant π^+ production (dominant) coherent π^+ production

- K2K: 1$^{\text{st}}$ search for coh π^+ prod at low E
- somewhat surprising results …
- see no evidence for coh π^+ production!
CC $1\pi^+$ Production

- resonant π^+ production (dominant)
- coherent π^+ production

MiniBooNE:
- inclusive measurement, CH$_2$
- this analysis: **40k events** (3.2x1020 POT)
 (5x more than previous bubble chamber data combined)
CC π^+ Production

Why important?

• poses largest background to ν_μ QE samples (large σ & π^+ can be absorbed in nucleus)

• useful for understanding Δ production in CH$_2$ ($\Delta \rightarrow N \gamma$ a background to $\nu_\mu \rightarrow \nu_e$ search)

• possibility for CC π^+ oscillation search

• useful in understanding our event reconstruction
MiniBooNE CC π^+ Selection

• very simple selection:
 - events with 2 decay electrons
 - unique, results in 84% purity

• expect μ^- to have shorter lifetime from μ^- capture (8% in 12C)
 - will also make use of this later

(M. Wascko)
MiniBooNE CC π^+ Reconstruction

measure Čerenkov light from muon (to avoid light from π^+)

see larger deficit in forward μ (low Q^2) than in QE data

(M. Wascko)
MiniBooNE CC π^+ Data

\[2M_p E_\mu - m_\mu^2 + (m_\Delta^2 - M_p^2) = \frac{E_{\nu\text{QE}}}{2(M_p - E_\mu + p_\mu \cos \Theta_\mu)} \]

- use 2 body (QE) kinematics
- assume $\Delta(1232)$ in final state (instead of p in QE case)
- energy distribution that will be used for CC π^+/QE cross section measurement
MiniBooNE CC π^+/QE Ratio

- efficiency corrected CC π^+/QE σ ratio meas on CH$_2$
- eff corrections from MC
- ample statistics → can perform a binned measurement
- current systematics estimate:
 - light propagation in oil: ~20%
 - ν cross sections: ~15%
 - energy scale: ~10%
 - statistics: ~5%

(J. Monroe, M. Wascko)

first measurement of this cross section ratio on a nuclear target at low energy!
MiniBooNE CC π^+ Cross Section

- multiplying measured CC π^+/QE ratio by QE σ prediction (σ_{QE} with $M_A = 1.03$ GeV, BBA non-dipole vector form factors)
- $\sim 25\%$ lower than prediction, but within errors

(J. Monroe, M. Wascko)
- MC error band from external ν data constraints
Plausible Interpretation

- since MiniBooNE 1st meas on nuclear target at these E’s
- at 1st glance, one might think this is pointing to a potential problem with nuclear corrs
Plausible Interpretation

- since MiniBooNE 1st meas on nuclear target at these E’s

- at 1st glance, one might think this is pointing to a potential problem with nuclear corrs

- but free nucleon σ’s disagree!

- MC prediction splits difference

- MiniBooNE results more consistent with ANL than BNL
 - new data helping to decide between 2 disparate σ meas
 - once final, type of info that can feed back into open source MC
New σ_ν Directions at MiniBooNE

- new antineutrino data!
- observing ν events from NuMI
- coming soon: new fine-grained new detector to this beamline (comparisons to MiniBooNE will be interesting)
MiniBooNE Antineutrino Running

• just started antineutrino running (January 19th)
 - ~1,000 $\bar{\nu}$ events/week
 - will have world’s largest low E $\bar{\nu}$ data set in a few weeks!

• goals are two-fold:
 - check LSND $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ signal
 (longer program, not yet approved)
 - measure $\bar{\nu}$ cross sections
 - systematic check of ν analyses
 - low Q^2 investigations
 - coherent π production
Need for $\bar{\nu} \sigma$ Measurements

- $\bar{\nu} \sigma$ data even less abundant
- MiniBooNE will make world’s 1st meas of $\bar{\nu} \sigma$ in this E range
 - expect \sim10k $\bar{\nu}_\mu$ QE in 1 year (after cuts)
- provide valuable input for future CP violation searches
 $P(\nu_\mu \rightarrow \nu_e) \neq P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$
- prefer not to rely on extrapolation of models into regions where no data
Added Difficulty with $\bar{\nu}$ Beams

• contending with “wrong sign” backgrounds (ν in $\bar{\nu}$ beam)
 - MiniBooNE beam is no exception …

• in neutralino mode, antineutrinos are $\sim 2\%$ of total events
Added Difficulty with $\bar{\nu}$ Beams

- contending with “wrong sign” backgrounds (ν in $\bar{\nu}$ beam)
 - MiniBooNE beam is no exception …

- in antineutrino mode, neutrinos are \sim30% of total events
 - “$\bar{\nu}$-enhanced beam”

- need a way to constrain ν backgrounds in $\bar{\nu}$ data

- Čerenkov detectors cannot distinguish μ^-, μ^+ event-by-event (no magnetic field)
Constraining ν Backgrounds in $\bar{\nu}$ Data

• needed to be more clever
• developed several novel techniques to measure from data

• 1^{st} and most powerful ...
• makes use of fact that QE ν & $\bar{\nu}$ have different angular distributions
• large angle QE’s as means of measuring ν content in $\bar{\nu}$ data
 (“poor man’s sign-selection”)
Three Independent Constraints

1. QE angular distributions provide best “wrong-sign” constraint, but also …

2. add’l constraint from CC π^+ events in $\bar{\nu}$ mode data
 (come entirely from ν interactions as $\bar{\nu}$’s produce a π^- in final state)
 - higher E constraint

3. also muon lifetimes (μ^- vs. μ^+ to distinguish ν vs. $\bar{\nu}$)
 - μ^- and μ^+ have different lifetimes due to μ^- capture probability in oil
 - not as precise a constraint, but indep of kinematics & recon

→ allows precise antineutrino σ measurements
 (once have a handle on ν backgrounds)
Antineutrino σ Measurements

- can add new info by mere fact that $\bar{\nu}$ scattering is different

\[\frac{d\sigma}{dQ^2} \]

\[\begin{align*}
\nu_\mu \text{ QE} & & \bar{\nu}_\mu \text{ QE} \\
\end{align*} \]

different shape & axial contribution

difference isolates interference term - directly α to axial FF
Antineutrino σ Measurements

- can add new info by mere fact that $\bar{\nu}$ scattering is different

\[\nu_\mu \text{ NC } \pi^0 \quad \bar{\nu}_\mu \text{ NC } \pi^0 \]

- 20% is coherent production

- 40% is coherent production

- “enhanced” coherent sample

latest K2K results say this peak will be missing: very apparent in $\bar{\nu}$ data
Can Detect ν’s from NuMI!

- neighbor’s beam
- first off-axis neutrino beam!

(A. Aquilar-Arevalo)

~10,000 ν events so far
100’s of ν_e events (calibration)
also opened up possibility to use this sample for σ_{ν} meas
(slightly diff beam spectrum)

- MINOS also sees MiniBooNE neutrinos in their detector

NuMI ν events in MiniBooNE detector
SciBooNE (E954)

- new Int’l collaboration
- couple well-understood, fine-grained detector with high rate beam
- unique, low risk opportunity
SciBooNE (E954)

- new Int’l collaboration

- couple well-understood, fine-grained detector with high rate beam

- unique, low risk opportunity

- excellent final state resolution

- improve on MiniBooNE ν, $\bar{\nu}$, σ studies
SciBooNE (E954)

- new Int’l collaboration
- couple well-understood, fine-grained detector with high rate beam
- unique, low risk opportunity
- excellent final state resolution
 - improve on MiniBooNE ν, $\bar{\nu}$ studies
 - σ_ν measurements for T2K
- just received Stage 1 approval (Dec ‘05)
 rapid schedule: begin data taking this Fall
 - www-sciboone.fnal.gov
Conclusions

• collected > 700k neutrino (> 1k antineutrino) events (7 x 10^{20} POT)
 - amassed the world’s largest ν sample in 1 GeV range
 - already an order of magnitude more data than previous bubble chamber based measurements
 - part of effort to help improve our current understanding of low E σ_ν
 - 1st results on MiniBooNE CC π^+/QE cross section

• coming soon …
 - ν_μ CC QE cross section results
 - NC π^0 cross sections
 - HARP results (8 GeV, Be, thick target)

• stay tuned for $\nu_\mu \rightarrow \nu_e$ oscillation results