Neutrino Oscillations and Lorentz Violation Results from MiniBooNE

Outline:
- LSND
 - signal for ν oscillations
 - sidereal analysis and LV
- Tandem Model
- MiniBooNE
 - experiment, analysis, ν results
 - LV results
The LSND Result

The LSND experiment observed an excess of $\bar{\nu}_e$ events in beam of $\bar{\nu}_\mu$

$$87.9 \pm 22.4 \pm 6.0 \ (4\sigma)$$

consistent with $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations.

However, this result, with large Δm^2, does not fit in a 3 generation neutrino model (given results from other oscillation experiments) since $\Delta m_{12}^2 + \Delta m_{13}^2 + \Delta m_{23}^2 = 0$

If LSND is correct \Rightarrow new physics.
- additional (sterile) neutrinos
- a different model for oscillations
Review: Sidereal variation in the LSND signal

- In AK, MM, PRD70, 076002, a short-baseline approximation for neutrino oscillations (allowing for sidereal variation) was developed.
- In PRD72, 076004 we (with LSND collaboration) reported the results of a search for sidereal variation in the LSND signal...

\[(h_{\text{eff}})_{ab} = |\vec{p}| \delta_{ab} + \frac{(\tilde{m}^2)_{ab}^*}{2|\vec{p}|} + \frac{1}{|\vec{p}|} \left[-(a_L)^\mu P_\mu - (c_L)^{\mu\nu} P_\mu P_\nu \right]_{ab}^*.\]

\[P_{\bar{\nu}_\mu \rightarrow \bar{\nu}_e} \approx \frac{|(h_{\text{eff}})\bar{\nu}_\mu |^2 L^2}{(\hbar c)^2}.\]

\[P_{\bar{\nu}_\mu \rightarrow \bar{\nu}_e} \approx \frac{L^2}{(\hbar c)^2} \left[(C)\bar{\nu}_\mu + (A_s)\bar{\nu}_\mu \sin \omega_T \theta \right.\]
\[+ (A_c)\bar{\nu}_\mu \cos \omega_T \theta + (B_s)\bar{\nu}_\mu \sin 2\omega_T \theta\]
\[+ (B_c)\bar{\nu}_\mu \cos 2\omega_T \theta \bigg]^2,\]

all are \(f(a_L, c_L\text{ and } \nu \text{ beam direction in sun-centered frame})\)
Sidereal variation in the LSND signal

- LSND sidereal variation, results:
 consistent with no sidereal variation...

Null hypothesis tests

<table>
<thead>
<tr>
<th></th>
<th>beam-on</th>
<th></th>
<th>beam-off</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sidereal</td>
<td>GM</td>
<td>sidereal</td>
<td>GM</td>
</tr>
<tr>
<td># of events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson’s χ^2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{bins}</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>χ^2</td>
<td>44.8</td>
<td>27.6</td>
<td>29.6</td>
<td>40.3</td>
</tr>
<tr>
<td>$P(\chi^2)$</td>
<td>0.15</td>
<td>0.84</td>
<td>0.77</td>
<td>0.29</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_n</td>
<td>0.076</td>
<td>0.066</td>
<td>0.019</td>
<td>0.040</td>
</tr>
<tr>
<td>$P(\text{KS})$</td>
<td>0.234</td>
<td>0.386</td>
<td>0.604</td>
<td>0.010</td>
</tr>
<tr>
<td>Beam-on/beam-off tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_n</td>
<td>0.067</td>
<td>0.046</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(\text{KS})$</td>
<td>0.432</td>
<td>0.864</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sidereal variation in the LSND signal

- LSND sidereal variation, results:
 extraction of SME parameter combinations.

- allowed regions include sidereal variations (non-zero A_s, A_c)

- extracted parameter square-sum:

$$\|(C)_{\bar{e}\bar{\mu}}\|^2 + \frac{1}{2}\|(A_s)_{\bar{e}\bar{\mu}}\|^2 + \frac{1}{2}\| (A_c)_{\bar{e}\bar{\mu}} \|^2$$

$$= 9.9 \pm 2.3 \pm 1.4 \times 10^{-19} \text{GeV}^2,$$

- (noted by AK, MM before this analysis)

- regardless of sidereal variation, if the SME is used to explain LSND then, a_L or $E \times c_L \sim 10^{-19} \text{GeV}$ (~ expected Planck-scale effects)
A “global model” of ν oscillations (with the SME)

- The biggest challenge in constructing a global model of ν oscillations within the SME is the E-dependence. SK-atmospheric and KAMLAND report an L/E dependence... How to model with E^0 and E^1 terms?

$$h_{\text{eff}} = \frac{1}{E}[(a_L)^\mu p_\mu - (c_L)^\mu\nu p_\mu p_\nu].$$

- AK, MM noted that the mixed energy dependence in the coeffs can lead to a LV “see-saw” mechanism that occurs in certain energy ranges (“pseudomass”)

- the “bicycle-model”

$$(h_{\text{bicycle}})_{ab} \rightarrow \begin{pmatrix} \tilde{c} & \tilde{a} & \tilde{a} \\ \tilde{a} & 0 & 0 \\ \tilde{a} & 0 & 0 \end{pmatrix}$$
The “tandem model”

- start with bicycle model

- add additional m^2 term which generates a 2nd seesaw...

- 3 parameters, rotationally invariant

- explain solar, atmospheric, KamLAND, LSND

- only 3 parameters (remember, standard 3ν has 4-6)

- no MSW needed for solar

- prediction for MiniBooNE (among others)
oscillation probabilities

solar neutrino oscillations

long-baseline anti-ν oscillations

short-baseline ν/anti-ν oscillations
MiniBooNE experimental strategy

- Test the LSND observation via $\nu_\mu \rightarrow \nu_e$ appearance.
- Keep L/E same, change beam, energy, and systematic errors

$$P(\nu_\mu \rightarrow \nu_e) = \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E)$$

neutrino energy (E):

- MiniBooNE: ~500 MeV
- LSND: ~30 MeV

baseline (L):

- MiniBooNE: ~500 m
- LSND: ~30 m

Diagram:
- Booster
- Primary beam: (protons)
- Secondary beam: (mesons)
- Tertiary beam: (neutrinos)
- Target and horn
- Decay region
- Absorber
- Dirt
- Detector

$(\pi^+ \rightarrow \nu_\mu \rightarrow \nu_e ??)$
MiniBooNE Collaboration

A. A. Aguilar-Arevalo5, A. O. Bazarko12, S. J. Brice7, B. C. Brown7, L. Bugel5, J. Cao11, L. Coney5, J. M. Conrad5, D. C. Cox8, A. Curioni16, Z. Djurcic5, D. A. Finley7, B. T. Fleming16, R. Ford7, F. G. Garcia7, G. T. Garvey9, J. A. Green8,9, C. Green7,9, T. L. Hart4, E. Hawker15, R. Imlay10, R. A. Johnson3, P. Kasper7, T. Katori8, T. Kobilarcik7, I. Kourtbanis7, S. Koutsouliotas2, E. M. Laird12, J. M. Link14, Y. Liu11, Y. Liu1, W. C. Louis9, K. B. M. Mahn5, W. Marsh7, P. S. Martin7, G. McGregor9, W. Metcalf10, P. D. Meyers12, F. Mills7, G. B. Mills9, J. Monroe5, C. D. Moore7, R. H. Nelson4, P. Nienaber13, S. Ouedraogo10, R. B. Patterson12, D. Perevalov1, C. C. Polly8, E. Prebys7, J. L. Raaf3, H. Ray9, B. P. Roe11, A. D. Russell7, V. Sandberg9, R. Schirato9, D. Schmitz5, M. H. Shaevitz5, F. C. Shoemaker12, D. Smith6, M. Sorel5, P. Spentzouris7, I. Stancu1, R. J. Stefanski7, M. Sung10, H. A. Tanaka12, R. Taylor8, M. Tzanov4, M. O. Wascko10, R. Van de Water9, D. H. White9, M. J. Wilking4, H. J. Yang11, G. P. Zeller5, E. D. Zimmerman4

(The MiniBooNE Collaboration)

1University of Alabama; Tuscaloosa, AL 35487
2Bucknell University; Lewisburg, PA 17837
3University of Cincinnati; Cincinnati, OH 45221
4University of Colorado; Boulder, CO 80309
5Columbia University; New York, NY 10027
6Embry Riddle Aeronautical University; Prescott, AZ 86301
7Fermi National Accelerator Laboratory; Batavia, IL 60510
8Indiana University, Bloomington; IN 47405
9Los Alamos National Laboratory; Los Alamos, NM 87545
10Louisiana State University; Baton Rouge, LA 70803
11University of Michigan; Ann Arbor, MI 48109
12Princeton University; Princeton, NJ 08544
13Saint Mary’s University of Minnesota; Winona, MN 55987
14Virginia Polytechnic Institute & State University; Blacksburg, VA 24061
15Western Illinois University; Macomb, IL 61455
16Yale University, New Haven; CT 06520
MiniBooNE beam: total ν flux

- mean energy \sim800MeV
- $\nu_e/\nu_\mu = 0.5\%$
ν Events in MiniBooNE
- Recall: search for ν_e in a ν_µ beam

- signature of a ν_e reaction (signal): electron

- need to distinguish from backgrounds (due to ν_µ reactions) that consist of a muon or π^0

- ν interaction products create (directed, prompt) Cerenkov light and (isotropic, delayed) scintillation light

- pattern and timing of the detected light allows for event identification (and position, direction, energy meas.)
ν interactions in detector:
- predicted ν events and fractions from event generator*
- extensively tuned using MiniBooNE data

predicted # ν events in data set (no efficiency corrections)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC quasilelastic</td>
<td>340k</td>
</tr>
<tr>
<td>NC elastic</td>
<td>150k</td>
</tr>
<tr>
<td>CC π⁺</td>
<td>180k</td>
</tr>
<tr>
<td>CC π⁰</td>
<td>30k</td>
</tr>
<tr>
<td>NC π⁰</td>
<td>48k</td>
</tr>
<tr>
<td>NC π⁺/-</td>
<td>27k</td>
</tr>
<tr>
<td>CC/NC DIS, multi-π</td>
<td>35k</td>
</tr>
<tr>
<td>all channels</td>
<td>810k</td>
</tr>
<tr>
<td>ν osc. events</td>
<td>~1k</td>
</tr>
</tbody>
</table>

*NUANCE (D. Casper, NPS, 112 (2002) 161)
oscillation analysis: strategy
- need accurate, efficient particle identification algorithm to separate (signal) electron-like events from ubiquitous (background) muon, pion events

- To avoid experimenter bias, this was done with “blind” procedure, signal data set kept in “box” until algorithms set.

Two algorithms were used:
- “track-based” (TB)
 Uses direct reconstruction of particle types and likelihood ratios for particle-ID
- “boosted decision trees” (BDT)
 Set of low-level variables combined with BDT algorithm -> PID “score”

- In the end, the TB analysis had slightly better sensitivity, so is used for primary results. BDT analysis is a powerful “double-check”
oscillation analysis: backgrounds

intrinsic-ν_e backgrounds (from ν_e produced at ν source)

- $\mu \rightarrow \nu_e$: (indirectly) measured in ν_μ CCQE events via π-decay chain
- $\pi \rightarrow \nu_e$:
- $K \rightarrow \nu_e$: measured in high-energy ν_μ, ν_e CCQE (from Kaons), extrapolate to low-E

“mis-ID” backgrounds (mainly from ν_μ)

- CC Inclusive: includes CCQE, measured, simulated
- NC π^0: measured, simulated
- NC $\Delta \rightarrow N\gamma$: constrained in data, simulated
- NC coherent, radiative γ: calculated, negligible
- Dirt: ν interactions outside tank, simulated, measured
- beam-unrelated events, measured, very small

correlated errors on all backgrounds are considered
oscillation analysis: box-opening

With...
- algorithms finalized,
- cuts determined,
- backgrounds predicted,
- the neutrino oscillation box was opened

on March 26, 2007
oscillation analysis: results

track-based analysis:
- $E_\nu > 475\text{MeV}$ cut for oscillation analysis region
- no sign of an excess in the analysis region
- visible excess at low E

No evidence for $\nu_\mu \rightarrow \nu_e$ appearance in the analysis region

$\chi^2_{\text{null}} - \chi^2_{\text{best}} = 0.94$
oscillation analysis: results

track-based analysis:
Counting Experiment: $475 < E_\nu < 1250$ MeV
data: 380 events
expectation: 358 ± 19 (stat) ± 35 (sys)
significance: 0.55σ

No evidence for $\nu_\mu \rightarrow \nu_e$ appearance in the analysis region
oscillation analysis: results

Limit curves:
solid: TB, primary result
dashed: BDT

- MiniBooNE and LSND incompatible at a 98% CL for all Δm^2 under a 2ν mixing hypothesis
oscillation results: low-energy region

Track-based analysis
$E_ν$ distributions:

For:
$300 < E_ν < 475$ MeV
$96 \pm 17 \pm 20$ events
Excess: 3.7σ

The energy-dependence of excess is not consistent with $ν_μ \rightarrow ν_e$ appearance assuming standard energy dependence

$$P(ν_μ \rightarrow ν_e) = \sin^2 2\theta \sin^2(1.27\Delta m^2 L/E)$$
Continuing work to understand low-energy region

- We continue to work to characterize and to determine the source of the event excess in the low-energy region ($E_\nu < 475 \text{MeV}$)

It may be...
- detector or analysis problems
- a background (and of importance for other experiments searching for $\nu_\mu \rightarrow \nu_e$ appearance)
- new physics

Working on all of these... new results soon

- NEW! this energy bin
Sidereal Analysis of MiniBooNE data

- Proceeding analogously to LSND sidereal analysis...
- better “coverage” than LSND data of sidereal day

300<\text{E}_\nu<475\text{MeV} MiniBooNE data
Sidereal Analysis, Preliminary results

300<\E<475\text{MeV}:

- sidereal: Pearson's $\chi^2 = 79.5/73$ (P=0.28)
- GM: Pearson's $\chi^2 = 72.8/73$ (P=0.49)

475<\E<1250\text{MeV}:

- sidereal: Pearson's $\chi^2 = 77.2/84$ (P=0.69)
- GM: Pearson's $\chi^2 = 76.4/84$ (P=0.71)

- actual chi2 tests performed with more bins (~5 events bin)
- final sidereal analysis will extract allowed regions or limits on SME parameters
Tandem model prediction

- Using MiniBooNE (public) data that includes detector efficiency effects, we calculated oscillation signal as predicted by tandem model. Recall prediction:
Tandem model prediction

- Using MiniBooNE (public) data that includes detector efficiency effects, we calculated oscillation signal as predicted by tandem model.
Summary

- MiniBooNE rules out (to 98%CL) the LSND result interpreted as
\(\nu_\mu \rightarrow \nu_e \) oscillations described with standard L/E dependence

This eliminates the following interpretations of LSND:
- \(\bar{\nu}_\mu \rightarrow \bar{\nu}_e \) oscillations with (w/"standard" assumptions of CPT, E-dependence)
- \(\nu_\mu \rightarrow \nu_e \) via a single sterile neutrino (""")

- The as-yet-unexplained deviation of MiniBooNE data from prediction at low-energy could be a background ... Currently working on this with very high priority.

... Or perhaps, new physics
- final sidereal analysis to come
- more work on tandem model
Summary

- MiniBooNE rules out (to 98%CL) the LSND result interpreted as $\nu_\mu \rightarrow \nu_e$ oscillations described with standard L/E dependence (Phys. Rev. Lett. 98, 231801 (2007), arXiv:0704.1500v2 [hep-ex])

This eliminates the following interpretations of LSND:
- $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations with (w/"standard" assumptions of CPT, E-dependence)
- $\nu_\mu \rightarrow \nu_e$ via a single sterile neutrino ("")

- The as-yet-unexplained deviation of MiniBooNE data from prediction at low-energy could be a background ... Currently working on this with very high priority.

- Thanks to AK for workshop and collaboration!
Summary

- Much credit due to Teppei Katori, please see his poster this evening!
Summary

- MiniBooNE rules out (to 98%CL) the LSND result interpreted as
 $\nu_\mu \rightarrow \nu_e$ oscillations described with standard L/E dependence

This eliminates the following interpretations of LSND:
 - $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillations with (w/"standard" assumptions of CPT, E-dependence)
 - $\nu_\mu \rightarrow \nu_e$ via a single sterile neutrino

- The as-yet-unexplained deviation of MiniBooNE data from prediction at low-energy could be a background ... Currently working on this with very high priority.

... Or perhaps, new physics
- final sidereal analysis to come
- more work on tandem model