A look Inside the par ticle
identification of MiniBooNE Single Decision Tree
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Decision Trees

An event consists of a set of charge, time, and
spatial information for each PMT.
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Designed to classify signal and background.

Sgnal = oscillation v CCQE events
Background = everything else (intrinsic v_, misID)

All variables are required to have good : 1

agreement between Data and MC simulation ¥ .

within statistical and systematic errors.
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X X probability of ~0.25%
00 Degrading of classifier performance by demanding
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ol achieve this goal. Boosted decision trees provide a
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* On track for aresult as soon as this summer.
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