A look inside the particle identification of MiniBooNE
Alexis Aguilar-Arevalo and Kendall Münch, Columbia University
Teppei Katori, Indiana University
Serge Quevedo, Louisiana State University
for the MiniBooNE Collaboration

Particle Identification (PID)

Designed to classify signal and background.

Signal = oscillation ν_{CCQE} events
Background = everything else (intrinsic ν_e, misID)

All variables are required to have good agreement between Data and MC simulation within statistical and systematic errors.

Simple Example

The goal of the classifier is to separate blue (signal) and red (background) populations.

Two ways to use decision trees. 1) Multiple cuts on X and Y in a big tree, 2) Many weak trees (single-cut trees) combined

1) Development of a single decision tree (growth steps 1-4)
2) Many weak trees (single cut trees) only 4 trees shown

Boosted Decision Trees

• Given a training sample, boosting increases the weights of misclassified events (background with is classified as signal, or vice versa), such that they have a higher chance of being correctly classified in subsequent trees.

• Trees with more misclassified events are also weighted, having a lower weight than trees with fewer misclassified events.

• Build many trees (~1000) and do a weighted sum of event scores from all trees (score is 1 if signal leaf, -1 if background leaf)

Summary and Outlook

• MiniBooNE is looking for ν_{μ} to ν_e oscillations with a probability of ~0.25%

• A powerful particle identification is essential to achieve this goal. Boosted decision trees provide a way to effectively combine all the information available in each event.

• NuMI and high energy MiniBooNE events provide useful checks of this particle identification on electron neutrino events.

• On track for a result as soon as this summer.